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CHAPTER 20
Valuing Interest Rate Products

Numerically

aluing interest rate derivatives written on short-term bonds is trickier than
valuing derivatives on other types of assets for two reasons. First, for an

asset such as a stock, a currency or a commodity, price can roam freely through
time without constraint. For a fixed income security, however, price is often
forced to take a particular level when the security matures. A T-bill, for exam-
ple, has a value of 100 when it matures, and a T-note has a terminal payment
equal to its final coupon interest payment plus the par value. Second, in the
fixed income markets, there is often a wide range of securities available on the
same underlying source of uncertainty. The U.S. Treasury, for example, has T-
bills, T-notes and T-bonds with a wide range of maturities. In modeling interest
rate dynamics, care must be taken to ensure that all of these securities are simul-
taneously valued at levels consistent with observed market prices.

The purpose of this chapter is modest—to develop a binomial procedure for
valuing interest rate derivative contracts where the short-term interest rate
(“short rate”) is the single underlying source of interest rate uncertainty. To
begin, we discuss a number of constant-parameter short rate processes to lay a
foundation for interest rate behavior. While these models are often useful in
developing economic intuition regarding interest rate behavior, they produce
zero-coupon bond values that are different from the observed market prices,
seemingly giving rise to arbitrage opportunities. Consequently, we next turn to
no-arbitrage pricing models. These models adjust the parameters of the interest
rate process in a manner that produces bond (and interest rate derivatives contract)
values equal to observed prices. With the mechanics of no-arbitrage pricing in
hand, we then turn to valuing zero-coupon and coupon-bearing bonds, callable
bonds, putable bonds, and bond options. Be forewarned, however. While the
valuation framework provided in this chapter is intuitive and commonly-applied
in practice, it only begins to scratch the surface of the literature focused on no-
arbitrage interest rate models. This literature is deep in multifactor theoretical
models of interest rate movements and numerical procedures for calibrating the
interest rate models and valuing interest rate derivatives. 

V
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CONSTANT-PARAMETER MODELS

In the Black-Scholes (1973)/Merton (1973) model developed in Chapter 5, the
price of an asset was assumed to follow the geometric Brownian motion (i.e.,
equation (5.4)), that is,

(20.1)

This assumption implies that, over the next infinitesimally small interval of time
dt, the change in asset price, dS, equals an expected price increment (i.e., the
product of the instantaneous expected rate of change in asset price, α, times the
current asset price, S, times the length of the interval) plus a random increment
proportional to the instantaneous standard deviation of the rate of change in
asset price, σ, times the asset price. Note that, in the assumed process (20.1), the
parameters α and σ are constants (i.e., do not vary through time or with the
level of asset price). In the first part of this section, we develop economic intu-
ition regarding plausible interest rate processes by examining four constant-
parameter interest rate processes. In the second part, we show why constant-
parameter, short rate models are seldom used in practice. 

Constant-Parameter, Short Rate Processes

The simplest constant-parameter, short rate process that we consider is the
arithmetic Brownian motion assumption,

dr = adt + σdz (20.2)

where dr is the instantaneous change in the short rate, a is its instantaneous
mean, and σ is its instantaneous standard deviation. The assumption (20.2) says
that the short-rate change over the next increment in time, ∆t, is normally dis-
tributed with mean r + a∆t and standard deviation .1 If a > 0, the short
rate is expected to climb through time, and, if a < 0, it is expected to fall. The
size of the random change in the rate increases proportionally with .

In terms of describing interest rate dynamics, the process (20.2) has a num-
ber of weaknesses. First, the process does nothing to guard against the possibil-
ity of the short rate becoming negative. In particular, if a < 0, the short rate must
eventually become negative. Similarly, the short rate can become negative in the
stochastic component of the short-rate movement (i.e., the second term on the
right-hand side of (20.2)) has a large negative value. Naturally, in a rationally
functioning marketplace, negative interest rates will not arise. In such an envi-
ronment, individuals would prefer to put cash in their mattresses than hold
Treasury bills.

A second weakness of (20.2) is that, if a > 0, the short rate is expected to
rise without limit. While this assumption may be plausible for asset prices,

1 For clarity of exposition, think of the short rate r as being the continuously compounded in-
terest rate on a one-year U.S. T-bill and the time increment  ∆t as being equal to one year.

dS αSdt σSdz+=

σ t∆

σ t∆
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casual empirical observation suggests that interest rates tend to revert toward
some long-run mean level through time.2 This stands to reason from an eco-
nomic standpoint. When interest rates are high, the demand for borrowed funds
subsides, causing interest rates to fall. Conversely, when interest rates are low,
the demand for borrowed funds rises, causing interest rates to rise. A third
weakness of (20.2) is that the volatility rate is the same, independent of whether
interest rates are high or low. From an empirical standpoint, the volatility of
interest rates tends to rise with as the level of interest rates rises and falls as the
level of interest rates falls.

The next constant-parameter, short-rate process that we consider is the geo-
metric Brownian motion assumption, 

dr = ardt + σrdz (20.3)

introduced by Rendleman and Bartter (1980). In (20.3), a is the instantaneous
expected rate of change in the short rate, and σ is its instantaneous standard
deviation. Note that this specification is identical to the BSM assumption (20.1),
that is, Rendleman and Bartter assume that the short rate behaves as if it were
an asset price. The process (20.3) circumvents two of the weaknesses associated
with (20.2). First, with (20.3), interest rates cannot become negative. One rea-
son is that the expected short rate at the end of the next increment in time is
rea∆t. Even if a < 0, the expected short rate remains positive. Another is that the
stochastic component of interest rate movements (i.e., the second term on the
right-hand side of (20.3)) approaches zero as interest rates fall. Second, the pro-
cess (20.3) captures the empirical phenomenon that the volatility of interest
rates changes (σr in this case) increases with the level of interest rates. The one
weakness that (20.3) does not circumvent, however, is that if a > 0 the short rate
is expected to rise without limit. The process fails to account for the empirical
fact (and economic prediction) that interest rates are mean-reverting. 

Next is the short-rate process derived by Vasicek (1977), 

dr = a(b – r)dt + σdz (20.4)

where the parameters a, b and σ are constants. Like (20.2) and (20.3), the
change in the short rate has an expected and a random component. Unlike the
first terms on the right-hand sides of (20.2) and (20.3) where the short rate is
expected to drift upward or downward, however, the first term on the right-
hand side of the Vasicek model (20.4) captures mean reversion in the short rate.
The long-run mean level of the short rate is b, so, if the current short rate r is
less than b, the short rate is pulled upward, and, if the current short rate is
above b, it is pulled downward (assuming, of course, that a is positive). The
parameter a is called the rate of pull or, simply, pull rate. If the pull rate is 0.5
and the current short rate r is 1% below the long-run mean b, we expect that
the short rate will increase by 0.5% over the next increment in time. If a = 0, the
short rate follows arithmetic Brownian motion with a zero mean (i.e., a random
walk). Where a = 1, the short rate is expected to immediately return to its long-

2 Recall that we first discussed mean reversion in Chapter 9.
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term mean. The last term on the right-hand side accounts for random move-
ments in the short rate. Like (20.2), the random changes in the short rate in
(20.4) are a normally distributed and independent of the level of the short rate.
This means, like (20.2), the short rate in (20.4) has the prospect of becoming
negative and does not account for the fact that the volatility of interest rates
changes tends to increase with the level of interest rates and vice versa.

The fourth and final constant-parameter, short rate process that we consider
was derived by Cox, Ingersoll, and Ross (1977). The CIR model is specified as 

(20.5)

The first term on the right-hand side (20.5) is the mean reversion component
introduced by Vasicek. Unlike the Vasicek model, however, the instantaneous
standard deviation by the factor . This overcomes the remaining two defi-
ciencies of the Vasicek model. Specifically, with the random component of the
interest rate change defined as , (1) the volatility of interest rate movements
is directly related to the level of interest rates; and (2) negative interest rates are
not possible (i.e., where the short rate falls to zero, the second term on the right-
hand side approaches zero, and the short rate is guaranteed to move upward).

Applying Constant-Parameter Models

All of the constant-parameter models described above can be implemented for
valuing bonds and interest rate derivatives. None of them will produce values
that are completely consistent with prices observed in the marketplace, however.
The reason is that the parameters of the model are constant through time. To see
this, consider applying the Vasicek model to value zero-coupon bonds. We begin
by approximating (20.4) using the binomial distribution,

(20.6)

Note that, by defining the short-rate movements as (20.6), the vertical distance
between the two nodes emanating from rt equals . 

One disadvantage of using the binomial method to approximate short-rate
movements within the Vasicek model is that the binomial lattice does not
recombine. To see this, recall the lattice notation from Chapter 9. Specifically,
let ri,j be the short rate at time i and vertical node j, where j = 1 is the lowest
node at time i. Figure 20.1 contains a two-period, short-rate lattice. Note that at
time 2, there are four nodes rather than three since, in general, r2,3 ≠ r2,2. The
only instance in which the nodes will recombine (i.e., r2,3 = r2,2) is where a = 0,
in which case the short rate follows a simple random walk. The fact that the
binomial lattice does not recombine does not mean that the binomial method
cannot be used in this context. It only means that the computational exercise is
more tedious. With a recombining lattice, the number of possible interest rate
nodes is n + 1. With a nonrecombining lattice, the number of nodes is 2n. Where

dr a b r–( )dt σ rdz+=

r

σ r

rt t∆+ rt–
a b rt–( )dt σ rdz+    with probability 1 2⁄=

a b rt–( )dt σ rdz–    with probability 1 2⁄=

=

2σ t∆
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the number of time steps is 10 (i.e., n = 10), the number of nodes is 101 for a
recombining lattice and 1,024 for a nonrecombining lattice.

Now, let us consider valuing zero-coupon or discount bonds using (20.6).
Assume that the zero-coupon yield curve is given by

where ri is the continuously compounded, zero-coupon yield rate, and Ti is its
time to maturity measured in years. Also assume that we have obtained a his-
tory of one-year short rates and have estimated the parameters of the Vasicek
model to be a = 0.5, b = 0.06, and σ = 0.01, where b and σ are annualized rates.3

Now, let us compute the one-year short rates using Vasicek’s mean-reverting
process, and then value one-year, two-year, and three-year discount bonds.

3 Recall that in Chapter 9 we showed how to estimate the parameters of a mean-reverting pro-
cess using regression analysis.

FIGURE 20.1 Two-period lattice for Vasicek model. 

where the nodes at time 1 are

and 

and the nodes at time 2 are

Note that, in general, r2,3 ≠ r2,2.

0 1 2

r2,4

r1,2

r2,3

r0,1

r2,2

r1,1

r2,1

r1 2, r0 1, a b r0 1,–( ) t∆ σ t∆+ +=

r1 1, r0 1, a b r0 1,–( ) t∆ σ t∆–+=

r2 4, r1 2, a b r1 2,–( ) t∆ σ t∆+ +=

r2 3, r1 2, a b r1 2,–( ) t∆ σ t∆–+=

r2 2, r1 1, a b r1 1,–( ) t∆ σ t∆+ +=

r2 1, r1 1, a b r1 1,–( ) t∆ σ t∆–+=

ri 0.10 0.05e
0.18 Ti 1–( )

–=
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FIGURE 20.2 Two-period lattice for Vasicek model assuming the current short rate is 5%, the 
pull rate is 0.5, the long-run average short rate is 6%, and the volatility rate is 1%. (r = 0.05, 
a = 0.5, b = 0.06, σ = 0.01).  

Figure 20.2 shows the evolution of the short rate under the assumed param-
eter values. With the current one-year short rate at 5%, the possible one-year
short rates in one year are

and 

The expected one-year short rates in two years are

and

Note that the lattice in Figure 20.2 shows the mechanics of short-rate mean
reversion at work. Each year, the one-year short-rate jumps up or down by 1%
due to the volatility component (i.e., ). Viewed in isolation, this means
than standing at r1,2 = 6.5%, the one-year short rate will jump to 7.5% or 5.5%
with equal probability. But, because the one-year spot rate is above the long-run
mean level of 6%, the subsequent one-year spot rates are pulled toward the
long-run mean by an amount equal to 0.5(0.06 – 0.065)1 = 0.0025 or 0.25%.
Thus, the nodes r2,4 and r2,3 are 7.25% and 5.25%, respectively.

Based on the evolution of one-year spot rates displayed in Figure 20.2, we
can now compute the values of one-year, two-year, and three-year discount

0 1 2

7.250%

6.500%

5.250%

5.000%

6.250%

4.500%

4.250%

r1 2, 0.05 0.5 0.06 0.05–( )1 0.01 1+ + 0.065= =

r1 1, 0.05 0.5 0.06 0.05–( )1 0.01 1–+ 0.045= =

r2 4, 0.065 0.5 0.06 0.065–( )1 0.01 1+ + 0.0725= =

r2 3, 0.065 0.5 0.06 0.065–( )1 0.01 1–+ 0.0525= =

r2 2, 0.045 0.5 0.06 0.045–( )1 0.01 1+ + 0.0625= =

r2 1, 0.045 0.5 0.06 0.045–( )1 0.01 1–+ 0.0425= =

±0.01 1
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bonds. A one-year discount bond pays 1 in one-year. The one-year short rate is
known to be 5%. The value of a one-year discount bond is therefore

DBV1 = e–0.05(1) = 0.95123

A two-year, zero-coupon bond pays 1 in year 2. According to the interest rate
lattice in Figure 20.2, the evolution of the short rate is (1) 5% over the first year
and 6.5% over the second or (2) 5% over the first year and 4.5% over the sec-
ond, with equal probability. The value of a two-year discount bond is therefore

DBV2 = 0.5e–0.05(1)e–0.065(1) + 0.5e–0.05(1)e–0.045(1) = 0.90037

Finally, a three-year discount bond pays 1 in three years. Again, the interest rate
lattice in Figure 20.2 describes the possible paths for the short-rate evolution.
Four paths are possible, each with equal probability: (1) 5%, 6.5%, and 7.25%,
(2) 5%, 6.5%, and 5.25%, (3) 5%, 4.5%, and 6.25%, and (4) 5%, 4.5%, and
4.25%. The value of a three-year discount bond is 

Now, with the Vasicek model discount bond values in hand, recall that at
the outset we assumed the zero-coupon yield curve was given by the relation Rt
= 0.10 – 0.05e0.18(t–1). Such a yield curve implies that the zero-coupon bond
prices at the outset are 

The one-year discount bond price matches its theoretical value because in apply-
ing the Vasicek model we assumed that the one-year short rate was 5%. The
two-year and three-year discount bond prices do not match their theoretical val-
ues (0.89005 versus 0.90037 and 0.82255 versus 0.85015, respectively), how-
ever. The reasons for these apparent arbitrage opportunities are twofold. First,
we used historical estimates of the parameters a, b, and σ, and, while assuming
past parameters are reasonable predictions for the future, they may not be. Sec-
ond, the Vasicek model assumes that the parameters a, b, and σ are constant
through time. Such an assumption will give rise to apparent arbitrage opportu-
nities because the interest rate dynamics modeled by (20.6) are not rich enough
to describe the current term structure of zero-coupon interest rates. 

Years to Maturity Spot Rate Discount Bond Price

1 5.000% 95.123

2 5.824% 89.005

3 6.512% 82.255

DBV3 0.25 e
0.05 1( )–

e
0.065 1( )–

e
0.0725 1( )–[ ] 0.25 e

0.05 1( )–
e

0.065 1( )–
e

0.0525 1( )–[ ]+=

0.25 e
0.05 1( )–

e
0.045 1( )–

e
0.0625 1( )–[ ] 0.25 e

0.05 1( )–
e

0.045 1( )–
e

0.0425 1( )–[ ]+ +

0.85015
 =
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FIGURE 20.3 Discount bonds values based on Vasicek model assuming the current short rate 
is 5%, the pull rate is 0.5, the long-run average short rate is 6%, and the volatility rate is 1%. 
(r = 0.05, a = 0.5, b = 0.06, σ = 0.01).

One-year discount bond value lattice:

Two-year discount bond value lattice:

Three-year discount bond value lattice:

One possible remedy to this problem is to calibrate the short-rate parame-
ters using market prices.4 More specifically, if we equate the model values of the
discount bonds to their observed prices, we can infer the parameters, a, b, and σ.
In the current illustration, we have two mismatched prices, so we can infer only
two of the three model parameters. Suppose that we are willing to accept the
fact that σ = 0.01. We can now solve for the parameters a and b by insisting that
the two-year and three-year discount bond values equal their market prices. The
parameter values of a = 0.2440 and b = 0.1177 will make the discount bond val-
ues equal their market prices,5 as shown in Figure 20.4. The apparent arbitrage
opportunities have disappeared, however, one is left with the uncomfortable sit-
uation that parameter values may not be reasonable from an economic stand-
point. Such is the tradeoff created by applying no-arbitrage pricing models.

0 1

1

0.95123

1

0 1 2

0.93707 1

0.90037

0.95600 1

0 1 2 3

0.93007 1

0.880334

0.94885 1

0.85015

0.93941 1

0.90715

0.95839 1

4 We used the calibration process in earlier chapters when we computed implied standard de-
viations from option prices.
5 Solving for the parameters a and b can be accomplished using the Microsoft Excel function,
SOLVER.
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FIGURE 20.4 Discount bonds values based on Vasicek model assuming the current short rate 
is 5%, the pull rate is 0.2440, the long-run average short rate is 11.77%, and the volatility 
rate is 1%. (r = 0.05, a = 0.2440, b = 0.1177, σ = 0.01).

One-year discount bond value lattice:

Two-year discount bond value lattice:

Three-year discount bond value lattice:

To emphasize the issue about the plausibility of the parameter estimates, we can
extend the illustration to include four discount bond prices. With three mismatched
prices, we can infer all three parameters of the Vasicek model. The no-arbitrage
parameter values will be a = 0.2494, b = 0.1161, and σ = –0.00009. Although all
discount bond values now match observed market prices, we are in the unpalatable
position of explaining why the estimate of the standard deviation parameter is neg-
ative. Clearly, we have reached the limits of this constant-parameter model. Beyond
four discount bond prices, it is impossible for the Vasicek model to be used within a
no-arbitrage framework. Arbitrage opportunities will appear. The assumed stochas-
tic process is simple not rich enough to capture interest rate movements.

NO-ARBITRAGE MODELS OF INTEREST RATES

As we have just shown, the chief disadvantage of constant-parameter models is
that they cannot, in general, fit today’s term structure of zero-coupon rates. In

0 1

1

0.95123

1

0 1 2

0.92633 1

0.89005

0.94504 1

0 1 2 3

0.90794 1

0.84954

0.92628 1

0.82255

0.92177 1

0.87991

0.94039 1
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order to ensure that the short-rate dynamics are consistent with prices observed
in the marketplace, we allow the parameters of the stochastic process to change
through time. This section focuses on the application on no-arbitrage pricing
models.6 First, we assume that the changes in the short rate are normally distrib-
uted, and then, to prevent the possibility of negative interest rates, we assume
the short rate is log-normally distributed (i.e., the logarithm of the short rate is
normally distributed).

Normal Distribution

Suppose we consider the Vasicek model (20.4) with time-varying parameters,
that is,

dr = a(t)[b(t) – r]dt + σ(t)dz (20.7)

Note that the pull rate a(t), the long-run mean b(t), and the volatility of the
short-rate σ(t) are functions of time. The process (20.7) can again be approxi-
mated by a binomial process, that is,

(20.8)

As before, we can see that the vertical distance between the two nodes emanat-
ing from ri,j in binomial lattice notation is , that is, 

(20.9)

Note that the volatility parameter is the local volatility of the one-period short
rate in one-period. Thus, if ∆t is one year, σ(0) is volatility of the one-year rate
in one year, σ(1) is volatility of the one-year rate in two years, σ(2) is volatility
of the one-year rate in three years, and so on.7 

To make the binomial lattice procedure more tractable, we impose the
restriction that the binomial lattice recombines (i.e., we set r2,3 = r2,2 in Figure
20.1). This means

(20.10)

and 

(20.11)

6 The pioneering work on valuing interest rate derivatives using no-arbitrage pricing models is
Ho and Lee (1986).
7 In this section, we assume that the sequence of volatility estimates is known. In practice, they
can be estimated from the prices of caps and floors.

rt t∆+ rt–
a t( ) b t( ) r–[ ] t∆ σ t( ) t∆+    with probability 1 2⁄=
a t( ) b t( ) r–[ ] t∆ σ t( ) t∆–    with probability 1 2⁄=


=

2σ t( ) t∆

ri 1+ j 1+, ri 1 j,+– 2σ i( ) t∆=

r2 3, r1 2, a 1( ) b 1( ) r1 2,–[ ] t∆ σ 1( ) t∆–+=

r2 2, r1 1, a 1( ) b 1( ) r1 1,–[ ] t∆ σ 1( ) t∆+ +=
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Equating (20.10) and (20.11), rearranging, and simplifying, we get

(20.12)

Substituting (20.9) into (20.12), we get

or

(20.13)

Note that because we imposed the restriction that the binomial lattice recom-
bines, the mean reversion parameter a(1) is determined by the ratio of the ratio
of the local volatility rates at adjacent time steps and need not be estimated sep-
arately.

We now turn to the computation of the binomial lattice in a no-arbitrage
pricing framework. The key relation in computing the lattice efficiently is that we
know the distance between adjacent vertical nodes at each time step (20.9). Begin
by considering the possible levels of interest rates at the end of one period. As
Figure 20.5 shows, there are two possibilities—r1,1 and 
with equal probability. Since the volatility parameter and the time increment are
known, identifying the numerical values of each of the two nodes is merely a
matter of finding r1,1. Suppose that the zero-coupon yield curve is described by
the relation

where t is measured in years and that the volatility rate is σ(t) = 0.01 for all t.
Based on the zero-coupon yields, we compute the prices of one-year and two-

r1 2, r1 1,– a 1( ) r1 2, r1 1,–( ) t∆– 2σ 1( ) t∆=

2σ 0( ) t∆ a 1( ) 2σ 0( ) t∆[ ] t∆– 2σ 1( ) t∆=

1 a 1( ) t∆– σ 1( ) σ 0( )⁄=

r1 2, r1 1, 2σ 0( ) t∆+=

ri 0.10 0.05e
0.18 Ti 1–( )–

–=

FIGURE 20.5 One-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is normally distributed. 

where the nodes at time 1 are

 and

0 1

r0,1

r1,1

r1 2, r1 1, 2σ 0( ) t∆+=

r1 1, r0 1, a 0( ) b 0( ) r0 1,–[ ] t∆ σ 0( ) t∆–+=

r1 2, r0 1, a 0( ) b 0( ) r0 1,–[ ] t∆ σ 0( ) t∆–+=

r1 1, 2σ 0( ) t∆+=
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year discount bonds. The one-year discount bond has a price of DBP1 = e–R(1)1 =
e–0.05(1) = 0.95123 and the two-year discount bond has a price of DBP2 = e–R(2)2

= e–0.05824(2) = 0.89005, as summarized in this table: 

Based on the prices the one-year and two-year discount factors, we can compute
the forward price of a one-year discount bond in one year as FBP1,1 = DBP2/
DBP1 = 0.93569. In the absence of costless arbitrage opportunities, it must be
the case that the forward discount bond price from the zero-coupon yield curve
must equal the expected discount value in the interest rate lattice. The value of
r1,1 can therefore be determined by solving 

The value can be determined iteratively using SOLVER. The value of r1,1 is
5.6523%, and the value of r1,2 is 7.6523%, as is shown in Figure 20.6.

We fill out the remaining lattice short-rate binomial lattice by using the
same computational procedure recursively. Consider Figure 20.7, which shows
the interest rate lattice over two periods. At the end of two periods, we have a

Years to
Maturity

Spot
Rate

Discount
Bond Price

Forward Discount
Bond Price

1 5.000% 0.95123

2 5.824% 0.89005 0.93569

0.93569 0.5e
r1 1,– t∆

0.5e
r1 1,– 2σ 0( ) t∆+( ) t∆

+=

0.5e
r1 1,–

0.5e
r1 1,– 0.02+

+=

FIGURE 20.6 One-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is normally distributed, the zero-coupon yield curve is  R(t) = 0.10 – 0.05e–0.18(t – 1) 
where t is measured in years, and the volatility rate is σ(t) = 0.01 for all t.

FIGURE 20.7 Two-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is normally distributed. 

0 1

7.6523%

5.0000%

5.6523%

0 1 2

r0,1

r1,1

r2,1

r2 3, r2 1, 4σ 1( ) t∆+=
r1 2, r1 1, 2σ 0( ) t∆+=

r2 2, r2 1, 2σ 1( ) t∆+=
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single unknown, r2,1, because we know the distance between adjacent vertical
nodes. To solve for its value, we must first compute the forward price of a one-
year discount bond in two years, FDB2,1. The zero-coupon yield curve tells us
its value is 0.92415.

In the absence of costless arbitrage opportunities, the forward discount bond
price from the zero-coupon yield curve must equal the expected discount price
within the interest rate lattice. The value of r2,1 can be determined by solving 

The solution to this equation is r2,1 = 0.058976. The rates at the middle and
upper nodes are therefore 0.078976 and 0.098976, respectively. For year 4, the
lowest minimum rate is identified by solving for 

The solution to this equation is r3,1 = 0.058252. The complete interest rate lat-
tice over four periods is shown in Figure 20.8.

Note that, in the above computations, we need to identify the probabilities
of arriving at binomial lattice node (i,j), where i is the number of the time step,
and j is the number of the vertical node (with j = 1 being the lowest). The gen-
eral formula for computing this probability is 

(20.14)

FIGURE 20.8 Three-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is normally distributed, the zero-coupon yield curve is R(t) = 0.10 – 0.05e–0.18(t–1) where 
t is measured in years, and the volatility rate is σ(t) = 0.01 for all t.
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Maturity
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Rate

Discount
Bond Price

Forward Discount
Bond Price

1 5.000% 0.95123

2 5.824% 0.89005 0.93569

3 6.512% 0.82255 0.92415

4 7.086% 0.75318 0.91567

0 1 2 3

11.8252%

9.8976%

7.6523%   9.8252%
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+ +=
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The probabilities of the nodes in the second time step are therefore

and

The no-arbitrage pricing framework described above is interesting in a num-
ber of respects. First, the drift in the short rate is dictated by the zero-coupon
yield curve. Note that at the end of period one, both possible short rates exceed
the short rate a period earlier. This simply reflects the fact that the yield curve is
strongly upward sloping. Second, the entire short-rate lattice can be summarized
using two vectors. In the first, we record the lowest interest rate node for each
time step, ri,1, i = 1, . . ., n. In the second, we record the local volatility rate,
σ(i), i = 0, . . ., n – 1. Third, in computing the interest rate lattice, we required
no specific knowledge of the pull rate a(t) or the long-run mean reversion level
b(t). The long-run mean reversion is subsumed in matching of the forward dis-
count bond price from the zero-coupon yield to the expected discount bond
price procedure. The pull rate a(t) is subsumed by the ratio of the local volatility
rates in adjacent periods (see equation (20.14)).

ILLUSTRATION 20.1 Develop binomial lattice assuming short rate is normally distributed.

Assume the zero-coupon yield curve is

and the local volatility function is . Develop a four-
period short-rate lattice where the short rate is a six-month rate.  

The first step in developing the interest rate lattice is to gather the problem informa-
tion. Based on the zero-coupon yields, we can compute discount bond prices and forward
discount bond prices. The problem information used as inputs in developing the interest
rate lattice is as follows:

Years to
Maturity Spot Rate

Discount
Bond Price

Forward Discount
Bond Rate

Local
Volatility Rate

0.5 5.369% 0.97351 1.099%

1 6.000% 0.94176 0.96739 1.027%

1.5 6.571% 0.90614 0.96217 0.971%

2 7.088% 0.86784 0.95773 0.925%

2.5 7.555% 0.82789 0.95397

p2 1,
1

2
--- 

  2 2!
1 1–( )! 2 1– 1+( )!
------------------------------------------------- 0.25= =

p2 2,
1

2
--- 

  2 2!
2 1–( )! 2 2– 1+( )!
------------------------------------------------- 0.5= =

p2 3,
1

2
--- 

  2 2!
3 1–( )! 2 3– 1+( )!
------------------------------------------------- 0.25= =

ri 0.12 0.06e
0.20 Ti 1–( )–

–=

σ i( ) 0.015 0.00025 1 Ti+( )ln–=



Valuing Interest Rate Products Numerically 719

The next step is to identify the lowest interest rate node at each of the four time
steps. At time 0, the lowest interest rate node is the spot rate 5.369%. At time 1, the low-
est interest rate is determined by solving 

The value of r1,1 is 5.8557%. The vertical distance between adjacent nodes at the end of
period one is , so r1,2 is 7.4094%.

The OPTVAL Library contains a function that determines the minimum short rate at
each time step. The function has the syntax

OV_TS_LATTICE_RMIN(fbp,v,tinc,nstep,nl)

where fbp is the forward discount bond price, v is the local volatility rate, tinc is the
length of each time step in years, nstep is the number of the current time step, and nl is
an indicator variable instructing the function to assume the short rate is normally distrib-
uted (“N” or “n”) or log-normally distributed (“L” or “l”). To perform the above com-
putation, use

OV_TS_LATTICE_RMIN(0.96739,0.01099,.5,1,“n”) = 0.058557

The minimum short rate at each time step is: 

The entire short-rate lattice over the two-year period is: 

Log-Normal Distribution

The main problem with assuming interest rate changes are normally distributed is
that there is some change that interest rates will become negative. A simple rem-

Time
Step

Years
to

Maturity
Spot
Rate

Discount
Bond
Price

Forward
Discount

Bond Price

Local
Volatility

Rate

Minimum
Short
Rate

0 0.5 5.369% 0.97351 1.099% 5.3690%

1 1 6.000% 0.94176 0.96739 1.027% 5.8557%

2 1.5 6.571% 0.90614 0.96217 0.971% 6.2636%

3 2 7.088% 0.86784 0.95773 0.925% 6.5814%

4 2.5 7.555% 0.82789 0.95397 6.8120%

0 0.5 1 1.5 2

12.0465%

10.7007%

9.1676% 10.7379%

7.4094%   9.3276%

5.3690% 7.7156%   9.4293%

5.8557%   7.9545%

6.2636%   8.1206%

  6.5814%

  6.8120%

0.96739 0.5e
r1 1,– 0.5( )

0.5e
r1 1,– 2 0.01099( ) 0.5+( )0.5

+=

2 0.01099( ) 0.5 0.015537=
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edy to this problem is to assume that interest rates are log-normally distributed or
put another way that the logarithm of the interest rate lnr is normally distributed.
The modifications to the no-arbitrage pricing procedure are straightforward. The
binomial process is

(20.15)

and the distance between adjacent vertical nodes in the binomial lattice is 

(20.16)

Since we would prefer to have the lattice contain interest rates rather than the
logarithm of interest rates, the log of interest rate spacing in (20.17) can be re-
written in interest rate form

(20.17)

To illustrate the application of this binomial procedure, reconsider the rates
zero-coupon yield curve of the running illustration. Furthermore, assume that
the volatility rate is 20%.8 The interest rates in year 2 are determined by solving 

The solution for the minimum interest rate is 5.3421%. The volatility rate is 0.20,
so the constant proportion between adjacent rates is 1.4918. The interest rate at
the upper node at year 2 is therefore 0.053421 × 1.49182 = 0.079695. The full
interest rate lattice under the log-normal assumption is provided in Figure 20.9.

FIGURE 20.9 Two-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is log-normally distributed. 

8 Note that the volatility rate of the change in the logarithm of the interest rate is dramatically
higher than the volatility rate of the change in interest rate.
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BOND VALUATION

With the mechanics of generating an interest rate lattice in hand, we now turn
to bond valuation. We start with the valuation of zero-coupon bonds, and then
generalize the framework to handle coupon-bearing bonds. We then show how
the framework can be modified to handle bonds with embedded options such as
callable bonds and putable bonds.

Zero-Coupon Bonds

To value options on bonds in a framework with short-term interest risk as the
underlying source of uncertainty requires that we first create a bond price lat-
tice. In order to do so, we extend the interest rate lattice to the end of the bond’s
life (which may be well beyond the option’s life). To illustrate, consider a 4-year
discount bond. In year 4, the bond matures with a payment of principal.
Assume the principal is 100. In year 3, the short-term interest in the uppermost
node is 0.152051. The value of the bond at that interest rate is 100e–0.152051(1) =
85.894. At the second uppermost node, the bond’s value is 100e–0.101923(1) =
90.310, and so on.

To compute the bond’s value in year 2, we must include the probabilities of
upward and downward interest rate movements. The value of the bond at the
uppermost node in year 2 is computed as 

The value of the bond at the second uppermost node is 

The price lattice of the four-year discount bond is shown in Figure 20.10.

FIGURE 20.10 Three-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is log-normally distributed, the zero-coupon yield curve is R(t) = 0.10 – 0.05e–0.18(t–1) 
where t is measured in years, and the volatility rate is σ(t) = 0.20 for all t.
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e
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FIGURE 20.11 Valuation of a four-year zero-coupon bond using a no-arbitrage pricing model 
that assumes the short rate is log-normally distributed, the zero-coupon yield curve is R(t) = 
0.10 – 0.05e–0.18(t–1) where t is measured in years, and the volatility rate is σ(t) = 0.20 for all t.

Coupon-Bearing Bonds

The interest rate lattice can be used to value all sorts of bonds. To illustrate its
generality, assume that we want to value a four-year coupon-bearing bond with
annual coupon payments equal to 6. Again we start at the end of the bond’s life.
In year 4, the bond matures with a coupon payment of 6 and a repayment of
principal of 100. In year 3, the short-term interest in the uppermost node is
0.152051. The value of the bond at that interest rate is 106e–0.152051(1) = 97.048.
At the second uppermost node, the bond’s value is 106e–0.101923(1) = 101.729,
and so on.

As we proceed backward in time, we must add in the coupon payments. The
value of the bond at the uppermost node in year 2 is 

and at the second uppermost node is 

The price lattice of the four-year coupon-bearing bond is provided in Figure 20.12.

Callable Bonds

A callable bond is a coupon-bearing bond that allows its issuer to retire the
bond before its stated maturity. In general, the call dates of the bond are cou-
pon-payment dates, and the amount that bondholders will be paid is the par
value of the bond plus the current coupon. 
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e
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Consider the 6% coupon-bearing bond valued in Figure 20.12. To value the
bond, we began at the end of the bond’s life and worked backwards, taking the
present value of the expected future value of the bond one node at a time. In look-
ing at the values reported at time step 3, note that at the bottom node, the value
of the bond is 107.255. If this bond was callable, the issuer would call the bond at
this node because calling it would cost 106 while waiting one more period would
cost 107.255. Thus in valuing this callable bond, we replace the value at this node
with 106, as shown in Figure 20.13, Panel A. Note that the value of the bond at
the lowest node at time step 2 has changed from 106.853 in Figure 20.12 to
106.257 in Figure 20.13, Panel A, reflecting the call feature of the bond. But if
interest rates evolved in a manner that the firm would find itself at the lowest
node at time step 2, it would call the bond since the present value of its expected
future value exceeds its immediate redemption value, 106. Again we replace the
computed value of the bond, as shown in Figure 20.13, Panel B. Working back-
ward to time 0, we find that the value of the callable bond is 95.707. Comparing
this bond value to the noncallable coupon-bearing bond value, we find that from
the firm’s perspective, the value of the call feature is 0.202.

Putable Bonds

A putable bond permits the bondholder to sell the bond back to the issuer, usu-
ally at the par value of the bond. This put gives the bondholder some protection
from loss of principal due to higher interest rates or credit deterioration of the
issuer. Putable bonds can be valued straightforwardly using our interest rate lat-
tice procedure. Suppose, for example, that the coupon-bearing bond shown in
Figure 20.12 is putable at par by the bondholder. Since the put will be exercised
only when the value of the bond falls below par value, we replace only the
uppermost node at time step 3, as shown in Figure 20.14, Panel A. Moving back
one time step, we see also that the bond will be put back to the issuer at the
uppermost node. Therefore as shown in Figure 20.14, Panel B, we replace the

FIGURE 20.12 Valuation of a four-year 6% coupon-bearing bond using a no-arbitrage pric-
ing model that assumes the short rate is log-normally distributed, the zero-coupon yield 
curve is R(t) = 0.10 – 0.05e–0.18(t–1) where t is measured in years, and the volatility rate is σ(t) 
= 0.20 for all t.
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uppermost node with a value of 100. Finally, at the end of time step 1, the bond-
holder will exercise his option at the uppermost node, so, again, we replace the
computed value of the bond with the exercise proceeds of 100. The value of the
putable bond is 97.452. The value of the nonputable coupon-bearing bond is
95.899. The value of the embedded put is therefore 1.447. 

BOND OPTION VALUATION

The interest rate lattice procedure can also be used to value bond options.
Assume, for example, that we want to value a two-year European-style put option
with an exercise price of 100. Also assume that the option expires just after the
coupon is paid in year 2. In year 2, therefore, the put’s value will be depend on the
ex-coupon bond price, which is the price reported in year 2 less 6. Given that the

FIGURE 20.13 Valuation of a four-year 6% coupon-bearing callable bond using a no-arbi-
trage pricing model that assumes the short rate is log-normally distributed, the zero-coupon 
yield curve is R(t) = 0.10 – 0.05e–0.18(t–1) where t is measured in years, and the volatility rate 
is σ(t) = 0.20 for all t.
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FIGURE 20.14 Valuation of a four-year 6% coupon-bearing puttable bond using a no-arbi-
trage pricing model that assumes the short rate is log-normally distributed, the zero-coupon 
yield curve is R(t) = 0.10 – 0.05e–0.18(t–1) where t is measured in years, and the volatility rate is 
σ(t) = 0.20 for all t.
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put is expiring, its values are given by the lower boundary condition max(0,X –
B), where X is the exercise price of the option and B is the bond price.

The value of the option in year 1 is the present value of the expected future
value. At the uppermost node, the computation is 

At the lowermost node, the computation is

The value of the put today is 4.567, as is shown in this figure: 

SUMMARY

The purpose of this chapter is modest—to develop a binomial procedure for val-
uing interest rate derivative contracts where the short-term interest rate (“short
rate”) is the single underlying source of interest rate uncertainty. To begin, we
discuss a number of constant-parameter, short-rate processes to lay a founda-
tion for interest rate behavior. While these models are often useful in developing
economic intuition regarding interest rate behavior, they produce zero-coupon
bond values that are different from the observed market prices, seemingly giving
rise to arbitrage opportunities. Consequently, we next turn to no-arbitrage pric-
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ing models. These models adjust the parameters of the interest rate process in a
manner that produces bond (and interest rate derivatives contract) values equal
to observed prices. With the mechanics of no-arbitrage pricing in hand, we then
turn to valuing zero-coupon and coupon-bearing bonds, callable bonds, putable
bonds, and bond options. Be forewarned, however. While the valuation frame-
work provided in this chapter is intuitive and commonly applied in practice, it
only begins to scratch the surface of the literature focused on no-arbitrage inter-
est rate models. This literature is deep in multifactor theoretical models of inter-
est rate movements and numerical procedures for calibrating the interest rate
models and valuing interest rate derivatives.
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