
THE JOURNAL OF FINANCE * VOL. XLIX, NO. 2 * JUNE 1994 

Mean Reversion of Standard & Poor's 500 
Index Basis Changes: Arbitrage-induced 

or Statistical Illusion? 

MERTON H. MILLER, JAYARAM MUTHUSWAMY, and 
ROBERT E. WHALEY* 

ABSTRACT 

Mean reversion in stock index basis changes has been presumed to be driven by the 
trading activity of stock index arbitragers. We propose here instead that the 
observed negative autocorrelation in basis changes is mainly a statistical illusion, 
arising because many stocks in the index portfolio trade infrequently. Even without 
formal arbitrage, reported basis changes would appear negatively autocorrelated as 
lagging stocks eventually trade and get updated. The implications of this study go 
beyond index arbitrage, however. Our analysis suggests that spurious elements may 
creep in whenever the price-change or return series of two securities or portfolios of 
securities are differenced. 

MEAN REVERSION IN STOCK index basis changes has been amply documented. 
MacKinlay and Ramaswamy (1988) find significant negative first-order auto- 
correlation in normalized intraday basis changes of the S&P 500 index 
futures traded on the Chicago Mercantile Exchange (CME). Yadav and Pope 
(1990) find similar behavior using Financial Times Stock Exchange (FTSE) 
100 index futures data from the London International Financial Futures 
Exchange (LIFFE), as does Lim (1990) using Nikkei 225 index futures from 
the Singapore International Monetary Exchange (SIMEX). The trading activ- 
ity of stock index arbitragers has been presumed to be driving this elastic 
realignment of stock index and index futures prices. When the basis widens 
beyond its theoretical level, arbitragers simultaneously sell index futures and 
buy the index portfolio, pulling the difference between the futures and index 
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prices back to normal levels. When the basis narrows, opposite trading 
actions and price reactions occur. 

We shall propose here an alternative explanation for the observed negative 
autocorrelation in basis changes, to wit, that it is mainly a statistical illusion, 
arising because many stocks in the index portfolio trade infrequently. Even if 
arbitrage in the formal sense never occurred, reported basis changes would 
appear to be negatively autocorrelated as lagging stocks eventually trade and 
get their prices updated. 

Basis reversions of this kind, unrelated to arbitrage, have long been 
recognized when they occur at the openings on days with a heavy imbalance 
in overnight orders, like Monday, October 19, 1987. The futures market 
opened that day down seven percent, an enormous one day drop by past 
standards. The reported index did not fall immediately, however, because it 
is based on the last transaction price of each component stock, and some large 
capitalization stocks in the index, including IBM, did not trade at the regular 
opening. The index was thus reporting mainly the long-since obsolete prices 
of Friday's close, not the prices actually achievable at Monday's opening. As 
each stock in turn opened down by seven percent, the reported index level 
moved closer to the futures price. But the process was slow. Ninety minutes 
passed before the reported basis returned to its equilibrium value.1 

An essentially similar, though much less obvious, illusion of mean rever- 
sion in the basis can arise, we will argue, even during the regular trading day 
if the parameters of the underlying stochastic processes driving prices in each 
market take on a certain constellation of values. Such estimates as we can 
make of these key parameters are consistent with their falling in this critical 
range. 

The plan of this article is as follows. Section I discusses the basis and its 
changes in an efficiently functioning, idealized marketplace. This behavior is 
then contrasted with the empirical findings for a number of actual stock 
index and futures markets. Section II summarizes the essentials of price 
changes and basis changes for the S&P 500 index and futures during its 
nine-year history. We show there that, contrary to the presumed arbitrage 
explanation, significant negative autocorrelation in observed basis changes 
exists even when the level of the basis is well within the pricing bands 
imposed by index arbitrage transaction costs. We also show that significant, 
negative autocorrelation exists in the basis changes of the geometrically 
weighted Value Line index, where index arbitrage is impossible. Section III 
offers our alternative explanation in terms of market microstructure, and, in 
particular, that differences in the frequency of trading of individual stocks 
within the index portfolio induces the mean reversion in the basis. We model 
infrequent trading effects as a simple autoregressive model and analyze its 
implications for basis changes. In Section IV, we fit the autoregressive model 
to observed index level changes each day to purge the effects of infrequent 

1 For an account of the arbitrage illusion at the opening on Black Monday and the misunder- 
standings it caused, see Miller (1989) and Harris (1989). 
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trading. Subtracting the model's innovations from observed futures price 
changes gives a "corrected" basis change series, in which, as predicted, the 
first-order autocorrelation is greatly reduced. Section V summarizes the 
article and offers some suggestions for reconciling our proposed arbitrage 
illusions with the observed arbitrage activity on the NYSE in recent years. 
Proofs of the asserted propositions are generally relegated to the appendix. 

I. Theoretical Basis Change Process and Reported Behavior 

In perfectly functioning markets, basis changes should be serially uncorre- 
lated. With security price changes being serially independent, the difference 
between price-change series of securities or security portfolios should also be 
serially independent. Yet, observed basis changes appear strongly negatively 
autocorrelated for different price-change interval lengths and for different 
markets including stock and bond indexes worldwide. This section contrasts 
the theoretical and empirical behavior of the stock index futures basis. 
Empirical values will be distinguished from their corresponding theoretical 
values by the superscript, o. 

A. Basis and Basis Changes 

The stock index basis, Bt, is the difference between the futures price, Ft, 
and the underlying stock index level, St, at a point in time t, 

Bt-Ft -St. (1) 

Without loss of generality, Ft and St can be assumed to follow random walks 
with homoskedastic increments. Changes in the index level, st- St - D 
and the futures price, ft Ft -Ft- 1, are therefore each serially uncorrelated. 
Since the basis is the difference between the futures price and the stock index 
level, it too follows a random walk, albeit of a different error structure. 
Change in the basis, 

lbt =Bt -Bt _ = ft -St,X (2) 

is therefore serially uncorrelated. 

B. Pricing Relation Between Index and Futures 

Postulating that basis changes are serially uncorrelated may seem prob- 
lematic given the deterministic convergence of the futures price to the stock 
index level over the life of the futures contract. Recall that the theoretical or 
"cost of carry" relation between the price of the futures and the level of the 
stock index is 

n 

Ft = Ster(T t) - E Dier(T- r) (3) 
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where Ft is the futures price at time t and St is the index level at time t. The 
riskless rate of interest, r is assumed to be a known, constant and continuous 
rate. Di represents the cash dividend paid at time Ti during the futures 
contract life (i.e., t < Ti < T). T is the expiration date of the futures contract, 
so T - t is the time to expiration of the futures contract. At time T, the 
futures price cash settles at (converges to) the stock index level, FT = ST. 

At first blush, the cost of carry relation thus appears inconsistent with the 
basis following a random walk. Under the cost of carry relation (equation (3)) 
the basis converges deterministically to zero at maturity, implying, among 
other things, that basis changes up to maturity will have negative first-order 
serial dependence.2 Any contaminating effects of forced basis convergence can 
be controlled, however, by eliminating overnight price changes. Recall that 
urnder the cost of carry equation (3), the convergence of the futures price and 
the stock index level arises from (a) the cash dividends paid on the index 
portfolio and (b) the interest cost of carrying the stock index portfolio. Stocks 
go ex-dividend overnight, so, if overnight price changes are excluded, the 
forced convergence attributable to dividends is completely removed. The same 
is true for interest, since interest is paid only when the stock portfolio is 
carried overnight (i.e., no interest is paid if the stock portfolio is bought and 
sold within a trading day). Thus, excluding overnight price changes removes 
any inconsistency between the cost of carry relation and our premise that the 
basis follows a random walk.3 

Excluding overnight price changes also means that the intraday behavior 
of basis changes and of changes in theoretical mispricing, 

n 

Theoretical mispricingt = Ft - Ster(T- t) 
+ 

Dier(T- r) (4) 
i=l1 

should be practically indistinguishable. Focusing on basis changes rather 
than changes in mispricing, however, lets us extend our sample back to the 
inception of the S&P 500 futures contract in April 1982. Using the mispricing 

1 
2That dependence can be shown to be very small-on the order of TX where T is the number 

of time intervals remaining in the futures contract life. If movements of the basis of a ninety-day 
futures contract are examined at daily intervals, the basis changes will have first-order autocor- 
relation on order of -1/90 or -0.011. For movements over fifteen-minute intervals during a 
six-hour trading day, the expected autocorrelation in the basis changes of a ninety-day futures 
contract is less than - 0.0005. 

Another possible reason for negative autocorrelation in basis changes is that the futures price 
Ft and the index level St may be cointegrated. Our examination of the autocorrelation function of 
the S&P 500 basis level during the sample period indicates that the basis is nonstationary, and 
therefore the cointegration is unlikely. 

3 Within the day, the basis should behave as a random walk as long as all prices are current. 
At the beginning of the trading day this is problematic, since the stock index level is computed 
and disseminated at the opening bell, even though stocks have not yet begun trading. To ensure 
that the prices of all stocks within the index are current (and not prices from the close of trading 
on the previous day), a short interval at the beginning of the day is also usually eliminated from 
our samples. The details of this- exclusion are given in the next section. 
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variable requires a daily cash dividend series, and the cash dividend series 
for the S&P 500 Index was not available before June 1988. 

C. Reported Behavior 

The properties of observed basis are remarkably different from the unpre- 
dictable random walk suggested by the underlying model. In particular, high, 
negative first-order autocorrelation in basis changes has been reported for 
every international stock index/index futures complex.4 MacKinlay and 
Ramaswamy (1988), for example, investigate basis change behavior of the 
CME's S&P 500 futures on a contract-by-contract basis during the period 
June 1983 through June 1987. They find that the average first-order autocor- 
relation for fifteen-minute changes in the mispricing variable (equation (4)) is 
- 0.23 during the overall sample period; and that the first-order autocorrela- 
tions of individual contracts are higher later in the sample period than earlier 
despite the increased stock market trading activity. Using daily FTSE 100 
futures and stock index data from the LIFFE during the period July 1984 
through June 1988, Yadav and Pope (1990) find similar basis behavior. On a 
contract-by-contract basis they report an average first-order autocorrelation 
in the mispricing variable of - 0.24 using closing prices. Like MacKinlay and 
Ramaswamy, Yadav and Pope find that the first-order negative autocorrela- 
tion becomes larger in recent years when stock market trading activity is 
higher. Finally, Lim (1990) examines five-minute changes in the basis of the 
Nikkei 225 index and futures (at the SIMEX) during 20 randomly selected 
days for the June 1988, September 1988, June 1989, and September 1989 
contract months. Again, the first-order autocorrelation is negative on average 
and is largest for the most recent contract. 

II. Arbitrage-induced Behavior? 

As common as documentation of negative first-order autocorrelation in 
observed stock index basis changes is the attribution of the behavior to the 
actions of index arbitragers. If the basis becomes too high relative to its 
theoretical level, arbitragers simultaneously sell the index futures and buy 
the index portfolio, pulling the difference between the futures and index 
prices back to normal levels. If the basis becomes too low, opposite trading 
actions and price reactions occur. Such, at least, is the conventional wisdom. 
Before offering our alternative view, we will first assess the plausibility of 
this arbitrage-induced explanation of basis behavior. We begin with a brief 
description of the data. 

4Nor is this type of basis behavior limited to stock indexes. Huggins (1991) documents similar 
basis behavior for the municipal bond index futures contract traded at the Chicago Board of 
Trade. 
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A. Data Sources 

Our primary source will be time and sales data for the S&P 500 futures 
contracts and underlying index during the period April 21, 1982 through 
March 31, 1991.5 These data, provided by the CME, contain the time and 
price (to the nearest 0.05 index points) of every futures transaction in which 
the price has changed from the previously recorded transaction and the S&P 
500 index level (to the nearest 0.01 index points) each time it is computed and 
transmitted to Chicago. Prior to June 13, 1986, the index was computed 
approximately once a minute; but, since then it has been computed approxi- 
mately four times per minute.6 The S&P 500 futures are on a quarterly 
expiration cycle (i.e., March, June, September, and December). Over our April 
1982 to March 1991 sample period, we consider 36 different S&P 500 futures 
contracts. For a given trading day, we use only the nearby futures contract 
with more than five days to expiration. 

A second set of futures-index data used will be for the Value Line futures 
traded at the Kansas City Board of Trade (KCBT). Tick Data, Inc. was the 
source of the time and sales data. The sample consists of 23 Value Line 
futures contracts traded during the period September 1, 1982 through March 
11, 1988. Again, for a given trading day during the sample period, we use 
only the nearby futures contract with more than five days to expiration and 
we exclude the crash week. Like the S&P 500 futures, the Value Line futures 
are also on a quarterly expiration cycle (i.e., March, June, September, and 
December). Beginning with the June 1988 contract, the KCBT changed the 
futures contract's underlying index from the geometrically weighted to the 
arithmetically weighted Value Line Composite index. 

To compute the theoretical mispricing variable for the S&P 500 futures, we 
need the riskless rate and the future cash dividends for the S&P 500 index 
portfolio. Our proxy for the riskless interest rate is the interest rate of the 
T-bill maturing most closely to the futures expiration, as reported in the Wall 
Street Journal. Our proxy for the future cash dividends is the actual cash 
dividends during the futures' life, as reported by The S&P 500 Information 
Bulletin starting in June 1988. 

The final data source was the New York Stock Exchange (NYSE). The 
NYSE records program trading volume from its Superdot system. A program 
trade is defined as the simultaneous purchase or sale of at least 15 different 
stocks with a total market value of $1 million or more. Since November 1989, 
the NYSE has broken down total program trading activity into its basic 
components. We use the index arbitrage component in relation to total NYSE 
trading volume to gauge the prevalence of index arbitrage during our sample 
period. 

5 Price changes the week of October 19 through 23, 1987 have been dropped from the sample 
as unrepresentative of normal basis behavior. Kleidon and Whaley (1992) describe and explain 
the puzzling behavior of basis on those days. 

6 See Stoll and Whaley (199Gb, p. 445) for greater detail on S&P 500 index reporting. 
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To convert the irregularly spaced transaction prices to price changes over 
uniform intervals, we take the last transaction within each of three different 
trading intervals studied-fifteen, thirty, and sixty minutes. Each trading 
day is partitioned into these fixed interval lengths, beginning with the 
opening of the NYSE at 9 A.M. (CST) before September 30, 1985 and at 8:30 
A.M. (CST) thereafter; and ending at 3 P.M. (CST), the close of the stock 
market.7 Since the observed index level at the beginning of the day is based 
largely on the previous day's closing stock prices, the first price change each 
day is eliminated.8 Prior to September 30, 1985, for example, the first price 
change of the day is from 9:15 to 9:30 A.M. for the fifteen-minute series, from 
9:30 to 10 A.M. for the thirty-minute series, and from 10 to 11 A.M. for the 
sixty-minute series. For reasons noted earlier, overnight price changes are 
also excluded. 

B. Observed Basis Change Behavior 

Table I presents a broad range of sample information on the observed 
moments of price changes and basis changes of the S&P 500 index-futures 
contract during the period April 1982 through March 1991. The results are 
reported (in three panels) for three different trading interval lengths-fif- 
teen, thirty, and sixty minutes-and are noteworthy on several counts. 

First, the fifteen-minute price changes in the S&P 500 index level show 
significant positive first-order autocorrelation. Over the entire sample period, 
the autocorrelation of index level changes is 0.128. This behavior, consistent 
with that reported in many previous studies, traces to infrequent trading of 
some index stocks. Because not all stocks in the index trade in every 
fifteen-minute interval, a market movement in one interval may not be 
reflected in the prices of some index portfolio stocks until later. This differen- 
tial, lagged adjustment of prices of portfolio stocks to new market information 
induces positive first-order autocorrelation in observed index level changes.9 

The positive autocorrelation in the fifteen-minute S&P 500 index level 
changes has dropped over the sample period from 0.507 in the first year, 
1983, to only 0.054 in 1990, the last full year. The average monthly trading 
volume of stocks on the NYSE has also increased dramatically over the same 
period, as can be seen from Figure 1, suggesting that the rise in stock market 
trading volume has reduced the effects of infrequent trading on autocorrela- 
tion in the index. 

7The S&P 500 futures stay open until 3:15 P.M., fifteen minutes later than the stock market, 
but prices from both markets are needed to compute the basis. 

8About ninety percent of the stocks in the S&P 500 index trade on the NYSE. Stoll and 
Whaley (1990a, p. 49) report that in 1986 the average time until the first trade of the day for 
NYSE stocks was 15.46 minutes. S&P 500 stocks tend to be more active than average, however. 
For the 500 most active stocks on the NYSE, the average time until the first trade was about five 
minutes. 

9 This effect was first recognized by Fisher (1966). Subsequently, formal nontrading models 
showing the origins of the positive autocorrelation were developed by Cohen et al. (1978, 1979), 
Dimson (1979), Lo and MacKinlay (1990), and Stoll and Whaley (1990b). 



486 The Journal of Finance 

Table I 

Properties of Observed S&P 500 Basis Changes 
Estimated first-order autocorrelation (,3l) of observed S&P 500 index changes (sW), S&P 500 
futures price changes (f?), S&P 500 index basis changes (b?), estimated contemporaneous 
correlation ( po), and the ratio of the estimated standard deviations (R?) of observed futures 
price changes to index level changes computed over 15-, 30-, and 60-minute intervals. Only price 
changes of the nearby futures contract with more than five days to expiration are used. 
Overnight price changes and the first price changes each day are excluded. The sample period 
extends from April 21, 1982 through March 31, 1991. 

Period 
No. of 

Begins Ends Observations bi(fo) pl(s0) Pl(b0) p? R? 

15-minute price changes 
4/82 3/91 51,323 -0.029 0.128 -0.369 0.683 1.354 
4/82 12/82 3,913 0.078 0.493 -0.098 0.512 2.155 
1/83 12/83 5,544 0.025 0.507 -0.198 0.535 1.764 
1/84 12/84 5,566 -0.020 0.377 -0.285 0.573 1.554 
1/85 12/85 5,673 -0.055 0.217 -0.337 0.587 1.448 
1/86 12/86 6,063 -0.025 0.115 -0.385 0.638 1.355 
1/87 12/87 5,944 -0.017 0.107 -0.410 0.691 1.316 
1/88 12/88 6,059 0.021 0.166 -0.405 0.736 1.275 
1/89 12/89 5,670 - 0.021 0.097 - 0.399 0.706 1.349 
1/90 12/90 5,549 - 0.086 0.054 - 0.424 0.738 1.258 
1/91 3/91 1,342 -0.156 0.067 -0.444 0.689 1.373 

30-minute price changes 
4/82 3/91 25,648 -0.010 0.107 -0.396 0.814 1.256 
4/82 12/82 1,956 -0.064 0.219 -0.320 0.625 1.809 
1/83 12/83 2,772 -0.043 0.236 -0.370 0.671 1.442 
1/84 12/84 2,783 0.034 0.179 -0.346 0.723 1.264 
1/85 12/85 2,837 0.007 0.170 -0.348 0.733 1.306 
1/86 12/86 3,031 -0.005 0.109 -0.379 0.789 1.284 
1/87 12/87 2,970 -0.027 0.061 -0.400 0.849 1.209 
1/88 12/88 3,029 0.074 0.112 -0.376 0.863 1.196 
1/89 12/89 2,827 0.021 0.138 -0.426 0.857 1.280 
1/90 12/90 2,772 -0.021 0.083 -0.447 0.837 1.184 
1/91 3/91 671 -0.116 0.128 -0.478 0.759 1.299 

60-minute price changes 
4/82 3/91 12,128 0.069 0.126 -0.380 0.892 1.205 
4/82 12/82 889 -0.035 0.153 -0.357 0.770 1.632 
1/83 12/83 1,260 0.038 0.156 -0.367 0.807 1.310 
1/84 12/84 1,265 0.036 0.115 -0.354 0.842 1.212 
1/85 12/85 1,325 0.073 0.160 -0.326 0.838 1.227 
1/86 12/86 1,513 0.054 0.072 -0.376 0.872 1.199 
1/87 12/87 1,482 0.083 0.095 -0.328 0.915 1.167 
1/88 12/88 1,513 0.088 0.111 -0.362 0.924 1.180 
1/89 12/89 1,315 0.170 0.191 -0.354 0.932 1.238 
1/90 12/90 1,261 0.042 0.147 -0.478 0.913 1.140 
1/91 3/91 305 -0.015 0.166 -0.469 0.795 1.248 
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Fi'gure 1. Average monthly trading volume of NYSE stocks. Average monthly trading 

volume of all stocks on the NYSE during the period April 1982 through March 199 1. The average 
volumes for 1982 and 1991 include only nine months and three months, respectively. 
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Second, and in contrast to the index itself, fifteen-minute price changes in 
the index futures contract show little autocorrelation. For the overall period, 
the first-order autocorrelation is not only small, but is slightly negative, 
- 0.029, reflecting almost surely the very narrow bid-ask spread in the S&P 
500 futures market. The variance attributable to new information completely 
swamps the serial covariance attributable to the bid-ask price effect. 

Third, the contemporaneous correlation between observed price changes in 
the index and index futures increases with the length of the trading interval. 
The contemporaneous correlation for the overall sample period increases from 
0.683 to 0.892, for example, as the trading interval increases from fifteen 
minutes to sixty minutes. The longer the time interval, the less important are 
the infrequent trading and bid-ask price effects relative to the price change 
attributable to new information. Increased trading activity in both the stock 
and futures markets over the years has also increased the contemporaneous 
correlation between price changes in the two markets. The sixty-minute 
results show contemporaneous correlation of 0.770 in 1983 and 0.913 in 1990. 

Fourth, the ratio of the standard deviations of observed futures price 
changes to observed index price changes, R?, is greater than one for the 
overall sample period and for each individual year during the sample period. 
Observed changes in the futures price are thus, on average, more volatile 
than changes in the index level.'0 

Finally, and most important, Table I shows persistent negative first-order 
autocorrelation in the basis changes of the S&P 500 index. For the fifteen- 
minute basis changes, the autocorrelation is - 0.369 for the entire sample 
period, and increases from - 0.098 in 1982 to - 0.424 in 1991 in spite of 
increased trading volume in both the stock and futures markets. Lengthening 
the interval, moreover, does not reduce the negative autocorrelation. In fact, 
the autocorrelation is higher in recent years for the sixty-minute interval 
than it is for the fifteen-minute interval (e.g., - 0.478 versus - 0.424 in 1990). 
Clearly, neither increased trading of index stocks nor lengthening the basis 
change interval has reduced the mean reversion in the observed basis." 

C. Basis Changes Within Transaction Cost Bands 

To see whether and to what extent the observed negative autocorrelation in 
basis changes can be traced to the actions of index arbitragers, we perform 
two experiments. The first examines basis and mispricing changes after 
eliminating all pairs of consecutive price changes in which the absolute value 

10 Our standard deviation ratios are higher than those implied by MacKinlay and Ramaswamy 
(1988), because we use price changes from the last three months of the futures contract life, 
whereas MacKinlay and Ramaswamy use price changes from all days during the contract life. 
S&P 500 futures with times to expiration greater than ninety days are thinly traded-in fact, 
they may not trade for hours or at all during a trading day. Since intervals with no transaction 
are recorded as zero price changes, the MacKinlay and Ramaswamy estimate of the variance of 
futures returns is downward biased as is their estimate of the variance ratio. 

11 As expected, essentially the same test results are obtained for theoretical mispricing 
changes during the period June 1988 through March 1991. 
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of the theoretical mispricing (equation (4)) exceeds one-quarter of one percent 
of the index level at the end of the first interval. Mispricings outside these 
transaction cost bands are taken as potential arbitrage opportunities. Subse- 
quent price changes are thus more likely to be arbitrage induced than when 
the mispricings are within the transaction cost bands. Note also that the 
transaction cost filter we apply is conservative. The transaction costs in- 
curred in executing profitable index arbitrage are likely to exceed the as- 
sumed one-quarter of one percent.12 Thus, our experiment is biased toward 
finding no autocorrelation in the basis changes. 

Table II contains the test results. The low transaction cost filter does 
substantially reduce the number of price change observations-the number 
of fifteen-minute changes, for example, falling from 16,135 to 12,708, and by 
similar proportions for the thirty- and sixty-minute samples. Surprisingly, 
however, the autocorrelation of the basis changes drops only slightly from 
- 0.416 in the overall sample to - 0.360 after excluding all possible profitable 
arbitrage opportunities. For the longer price change intervals, the drop in 
correlation after the filter is applied is even smaller. 

D. Value Line Results 

Our second test of the arbitrage explanation of the mean reversion uses 
data for a different stock index futures contract-one that cannot be arbi- 
traged against the underlying stock index portfolio. Prior to March 1988, the 
Value Line futures contract was written on the Value Line Composite Index. 
Because that index portfolio was geometrically weighted, the possibility of 
buying or selling a portfolio that behaved like the Value Line index was 
virtually ruled out.13 Table III contains a summary of the empirical proper- 
ties of the Value Line basis changes during the period when no formal 
arbitrage was actually being undertaken. 

The results for the Value Line basis in Table III are remarkably similar to 
those reported earlier for the S&P 500 basis in Table I. Overall, the futures 
price changes are mildly negatively autocorrelated, and the stock index level 
changes are highly positively autocorrelated. Most important, the basis 
changes show high first-order negative autocorrelation-behavior that can- 
not be attributed to index arbitrage. 

E. Index Arbitrage Trading Volume 

Taken together, then, the Value Line and transaction cost band tests imply 
that formal arbitrage cannot explain the negative autocorrelation in basis 

12 Neal (1992) examines actual index arbitrage programs during the first quarter of 1989 and 
estimates that transaction costs are 0.31 percent (i.e., 0.90 index points divided by 290.50, the 
average level of the S&P 500 index during his sample period). 

13 Strictly speaking, it is possible to hedge a geometrically weighted portfolio, as shown by 
Satchell and Yoon (1992). For the Value Index, however, that is not practical. Note also that 
arbitrage is also virtually impossible in the Chicago Board of Trade's Municipal Bond Futures 
Index contract, where Huggins (1991) reports substantial negative autocorrelation in basis 
changes. 
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Futures 

Mispricings 

Estimated 

first-order 

autocorrelation 

(j?l) 

of 

S&P 

500 

index 

level 

changes 

(s?), 

futures 

price 

changes 

(f?), 

basis 

changes 

(b?), 

theoretical 

futures 

price 

changes 

(fo), 

changes 
in 

theoretical 

futures 

mispricing 

(mi), 

estimated 

contemporaneous 

correlation 
( 

po), 

and 

the 

ratio 
of 

the 

estimated 

standard 

deviations 

(R?) 

of 

observed 

futures 

price 

changes-index 

level 

changes 

and 
of 

futures 

price 

changes-theoretical 

futures 

price 

changes 

computed 

over 

15-, 

30-, 

and 

60-minute 

trading 

sessions. 

Only 

price 

changes 
of 

the 

nearby 

futures 

contract 

with 

more 

than 

five 

days 
to 

expiration 

are 

used. 

Overnight 

price 

changes 

and 

the 

first 

price 

changes 
at 

the 

beginning 
of 

each 

day 

are 

excluded. 

The 

sample 

period 

extends 

from 

June 
1, 

1988 

through 

March 

31, 

1991. 

Price 

changes 

based 

on 

mispricings 
of 

greater 

than 

1/4 

percent 

are 

eliminated. 

Period 

Basis 

Changes 

Changes 
in 

Theoretical 

Mispricings 

No. 
of 

No. 
of 

Begins 

Ends 

Observations 

,i(fo) 

pl(s0) 

b1(b0) 

? 

R? 

Observations 

, 

(fo) 

,j(fo) 

,l(m0) 

Po 

R? 

. 

. 

15-minute 

price 

changes 

6/88 

3/91 

16,135 

-0.071 

0.076 

-0.416 

0.717 

1.304 

12,708 

-0.038 

0.083 

-0.360 

0.832 

1.151 

6/88 

12/88 

3,574 

-0.054 

0.117 

-0.403 

0.705 

1.291 

3,218 

-0.029 

0.146 

-0.352 

0.775 

1.204 

1/89 

12/89 

5,670 

-0.021 

0.097 

-0.399 

0.706 

1.349 

3,923 

-0.100 

0.036 

-0.347 

0.852 

1.136 

1/90 

12/90 

5,549 

-0.086 

0.054 

-0.424 

0.738 

1.258 

4,667 

-0.014 

0.093 

-0.360 

0.830 

1.150 

1/91 

3/91 

1,342 

-0.156 

0.067 

-0.444 

0.689 

1.373 

900 

-0.027 

0.045 

-0.409 

0.864 

1.132 

30-minute 

price 

changes 

6/88 

3/91 

8,057 

-0.019 

0.104 

-0.441 

0.831 

1.229 

6,261 

0.003 

0.070 

-0.393 

0.897 

1.107 

6/88 

12/88 

1,787 

0.004 

0.076 

-0.398 

0.826 

1.187 

1,602 

0.014 

0.069 

-0.367 

0.863 

1.143 

1/89 

12/89 

2,827 

0.021 

0.138 

-0.426 

0.857 

1.280 

1,903 

-0.004 

0.070 

-0.367 

0.910 

1.095 

1/90 

12/90 

2,772 

-0.021 

0.083 

-0.447 

0.837 

1.184 

2,310 

-0.007 

0.062 

-0.411 

0.898 

1.106 

1/91 

3/91 

671 

-0.116 

0.126 

-0.478 

0.759 

1.299 

446 

0.048 

0.105 

-0.417 

0.916 

1.087 

60-minute 

price 

changes 

6/88 

3/91 

3,774 

0.071 

0.146 

-0.430 

0.902 

1.187 

2,863 

0.073 

0.120 

-0.428 

0.941 

1.080 

6/88 

12/88 

893 

0.028 

0.036 

-0.373 

0.900 

1.151 

790 

0.048 

0.039 

-0.348 

0.918 

1.105 

1/89 

12/89 

1,315 

0.170 

0.191 

-0.354 

0.932 

1.238 

852 

0.062 

0.070 

-0.428 

0.948 

1.075 

1/90 

12/90 

1,261 

0.042 

0.147 

-0.478 

0.913 

1.140 

1,029 

0.094 

0.185 

-0.457 

0.944 

1.079 

1/91 

3/91 

305 

-0.015 

0.166 

-0.469 

0.795 

1.248 

192 

0.054 

0.080 

-0.498 

0.945 

1.057 
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Table III 

Properties of Observed Value Line Basis Changes 
Estimated first-order autocorrelation ( P1) of observed Value Line index level changes (s0), Value 
Line futures price changes (f0), Value Line index basis changes (b 0), estimated contemporane- 
ous correlation ( j0), and the ratio of the estimated standard deviations (R0) of observed futures 
price changes to index level changes computed over 15-, 30-, and 60-minute intervals. Only price 
changes of the nearby futures contract with more than five days to expiration are used. 
Overnight price changes and the first price changes each day are excluded. The sample period 
extends from September 1, 1982 through March 11, 1988. 

Period No. of 

Begins Ends Observations $1(fo) p1(s') P1(b?) ? R0 

15-minute price changes 
9/82 3/88 31,597 -0.041 0.416 -0.182 0.304 2.754 
9/82 12/82 1,870 0.078 0.665 0.020 0.120 3.647 
1/83 12/83 5,566 0.011 0.668 -0.079 0.197 3.240 
1/84 12/84 5,522 -0.022 0.633 -0.119 0.204 3.274 
1/85 12/85 5,657 -0.100 0.360 -0.233 0.227 2.563 
1/86 12/86 6,072 -0.055 0.338 -0.233 0.312 2.331 
1/87 12/87 5,734 -0.074 0.370 -0.231 0.362 2.809 
1/88 3/88 1,176 0.019 0.373 -0.267 0.490 2.322 

30-minute price changes 
9/82 3/88 15,798 - 0.064 0.361 - 0.273 0.482 2.305 
9/82 12/82 935 -0.166 0.420 -0.325 0.248 2.923 
1/83 12/83 2,783 -0.060 0.501 -0.272 0.341 2.509 
1/84 12/84 2,761 0.014 0.486 -0.184 0.380 2.473 
1/85 12/85 2,828 -0.005 0.276 -0.235 0.406 2.120 
1/86 12/86 3,036 -0.001 0.301 -0.226 0.504 1.976 
1/87 12/87 2,867 -0.126 0.342 -0.325 0.545 2.401 
1/88 3/88 588 0.119 0.379 -0.158 0.734 2.054 

60-minute price changes 
9/82 3/88 7,511 0.042 0.289 -0.233 0.662 1.920 
9/82 12/82 425 - 0.074 0.295 - 0.378 0.556 2.426 
1/83 12/83 1,265 0.041 0.358 - 0.307 0.582 2.030 
1/84 12/84 1,255 0.013 0.369 -0.207 0.573 2.115 
1/85 12/85 1,321 0.073 0.299 -0.244 0.607 1.892 
1/86 12/86 1,518 0.047 0.191 -0.229 0.651 1.707 
1/87 12/87 1,433 0.061 0.306 -0.183 0.708 1.907 
1/88 3/88 294 0.050 0.326 - 0.253 0.818 1.940 

changes. But, this result should not be surprising. Index arbitrage accounts 
for only a small fraction of the daily trading volume on the NYSE. 

To document the level of index arbitrage activity, we turn directly to the 
weekly index arbitrage trading volume figures reported by the NYSE. As 
noted earlier in this section, index arbitrage trading volume has been re- 
ported on a weekly basis since November 1989. From these figures, we 
computed summary statistics across all weeks in the sample. We also com- 
puted summary statistics for weeks including and excluding index futures 
and options contract expirations. Once every month, at least two types of 
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index derivatives expire. Once every quarter, the week also includes the S&P 
500 futures contract expiration. Since most index arbitrage activity in the 
United States is done in conjunction with the S&P 500 futures, we can expect 
to find particularly high index arbitrage activity in the quarterly expiration 
cycle. 

Table IV shows two important results. First, the amount of index arbitrage 
activity as a proportion of total program trading varies considerably. Table IV 

Table IV 

Summary of Weekly NYSE Index Arbitrage, Program Trading, 
and Total Trading Volume During November 1989 through 

March 1991 
Summary statistics are computed across all weeks in the sample, all weeks with a nonquarterly 
expiration day, all weeks with a quarterly expiration day, and all weeks with no expiration day. 

Index 
Average Daily Volume Arbitrage 

(in millions) Percentage of All Trading as Percentage 

All All of All 
Summary Index Program All Index Program Program 
Statistics Arbitrage Trading Trading Arbitrage Trading Trading 

All weeks 
No. of weeks 73 73 73 73 73 73 
Mean 7.2 16.5 162.0 4.4 10.1 43.1 
Median 6.8 14.7 160.6 4.1 9.1 44.2 
Minimum 1.1 5.1 86.8 0.9 4.5 13.9 
Maximum 17.6 39.9 257.6 9.7 24.4 64.7 
Standard deviation 3.4 7.3 27.7 1.9 4.0 8.9 

Nonquarterly expiration-day weeks 
No. of weeks 11 11 11 11 11 11 
Mean 9.0 21.1 170.0 5.3 12.3 41.5 
Median 8.3 20.2 167.0 5.1 12.3 41.8 
Minimum 3.0 11.6 147.7 2.0 7.9 25.7 
Maximum 16.6 31.0 236.8 9.2 16.9 54.4 
Standard deviation 4.0 6.1 25.8 1.8 2.5 8.4 

Quarterly expiration-day weeks 
No. of weeks 6 6 6 6 6 6 
Mean 14.5 34.7 169.4 8.6 20.6 42.1 
Median 14.4 35.8 165.6 8.8 20.2 43.8 
Minimum 12.0 25.5 149.1 7.4 16.5 35.3 
Maximum 17.6 39.9 195.7 9.7 24.4 47.1 
Standard deviation 2.1 4.8 19.1 0.9 2.7 4.6 

Weeks not including an expiration day 
No. of weeks 56 56 56 56 56 56 
Mean 6.0 13.6 159.6 3.8 8.6 43.5 
Median 6.3 13.7 158.0 3.8 8.5 45.4 
Minimum 1.1 5.1 86.8 0.9 4.5 13.9 
Maximum 9.7 20.8 257.6 6.5 13.7 64.7 
Standard deviation 2.0 3.5 28.7 1.2 1.9 9.4 
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shows that while index arbitrage accounts for about 43 percent of program 
trading on average, some weeks it is as low as low as 13.9 percent of all 
program trading; other weeks it is as much as 64.7 percent. Many studies use 
program trading volume as a proxy for the amount of index arbitrage. The 
reported variation implies that this can be a misleading practice. Second, 
index arbitrage trading volume is a very small percentage of total trading 
volume on the exchange. Across all weeks in the sample period, index 
arbitrage accounts for 4.4 percent of total NYSE trading volume. As expected, 
the index arbitrage activity is higher than average in the expiration 
weeks-8.6 percent for the "triple-witching days" and 5.3 percent for the 
"double-witching" days. Since that index arbitrage activity reflects position 
unwinding, we can reasonably exclude these weeks when assessing the 
degree of profit-motivated index arbitrage activity. Looking to the last panel 
of Table IV, we find that index arbitrage accounts for only 3.8 percent of total 
trading volume. Something other than index arbitrage must be driving the 
mean reversion in the observed basis levels. 

III. Market Microstructure Explanation 

What then does cause the mean reversion in the observed stock index 
futures basis? In this section, we argue that the observed basis change 
behavior arises because index stocks do not trade continuously. The nature of 
the mean reversion is complex and depends on a number of factors including 
the variances of futures price and index level changes, the contemporaneous 
correlation between futures price changes and changes in the index level, and 
the frequency of trading of index stocks. For the range of parameters typically 
associated with intraday stock index-futures price changes, we show that 
mean reversion not only is expected but also becomes more severe as trading 
frequency increases (but is not yet continuous). 

A. Infrequent Trading and Other Microstructural Considerations 

Infrequent trading has two forms. The first occurs when stocks trade every 
consecutive interval, but not necessarily at the close of each interval. This 
form of infrequency, often dubbed "nonsynchronous trading," has been stud- 
ied by Scholes and Williams (1977a, 1977b) and Muthuswamy (1990). Infre- 
quent trading is also said to occur when stocks do not trade every consecutive 
interval. Fisher (1966), Dimson (1979), Cohen et al. (1978, 1979), Lo and 
MacKinlay (1990), and Stoll and Whaley (1990b) focus on this "nontrading" 
and its consequences. 

The key to distinguishing nonsynchronous trading from nontrading is the 
interval over which price changes or returns are computed. When returns are 
measured on a monthly basis, for example, virtually all NYSE stocks will 
have traded at least once, but not all stocks will have transacted exactly at 
the close of trading on the last trading day of the month. That is nonsyn- 
chronous trading. When returns are measured over trading intervals as short 
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as fifteen minutes, however, all NYSE stocks are unlikely to have traded at 
least once in every consecutive fifteen-minute interval. That is nontrading. As 
the trading interval shrinks, nonsynchronous trading becomes nontrading. 

Before modeling the effects of infrequent trading on observed index level 
changes, some other microstructure effects that may influence the properties 
of security returns are also worth noting. Possible contamination in the true 
price process may arise, for example, from the random bouncing of transac- 
tion prices between bid and ask levels. Roll (1984) shows that bid-ask price 
bounce induces negative first-order autocorrelation in observed price changes 
even though price innovations are serially independent. In the context of this 
paper, the bid-ask price bounce will show up more strongly in the futures. 
Because the index level is an average of prices across stocks at a given point 
in time, the trading by some stocks traded most recently at bid prices is offset 
by other stocks trading most recently at ask levels.14 The futures contract, on 
the other hand, is a single security. Negative first-order autocorrelation in 
observed price changes is likely for extremely short intervals where the price 
movement attributable to new information may be small relative to the size 
of the bid-ask spread. 

Besides bid-ask bounce, individual security return series may be influenced 
by the splitting of large buy and sell orders into two or more smaller orders. 
When split transactions are executed at successively higher (lower) prices, 
observed price changes may be positively autocorrelated. And, when security 
returns from different markets are compared, nonuniform delays in recording 
(and time stamping) transactions may attenuate otherwise perfect cross- 
correlation. At the portfolio level, delays may also be introduced, because 
reported stock transaction prices must be further manipulated in computing 
the S&P 500 index level.15 Finally, another consideration is mechanical 
failure. In his analysis of apparent delinkage between the S&P 500 futures 
market and the stock market on October 19, 1987, Kleidon (1992) showed 
that the computation of the basis was distorted by mechanical failures in the 
equipment for entering and removing limit orders. 

Though a number of microstructure considerations can thus affect the 
behavior of observed basis price changes, the preponderance of past evidence 
indicates that intraday security price changes are negatively autocorrelated, 
while index level changes are positively autocorrelated. This means that the 
primary microstructure effects are infrequent trading of index stocks and 
bid-ask bounce for futures. We now try to capture their effects in simple, 
parsimonious time series models, which help identify the sources of the 
predictable patterns in observed basis changes. 

14 Stoll and Whaley (1990b, pp. 451-452) develop this argument more fully. 
15 Delays in computing the S&P 500 index level, once the stock transactions have been entered 

on the floor of the NYSE, are minimal. The process by which the index is computed and 
disseminated is provided in Stoll and Whaley (1990b, p. 445, footnote 6). 
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B. Dynamics of Observed Index and Futures Price Changes 

To model the effects of nonsynchronous trading and nontrading of index 
portfolio stocks on the observed changes in the index level, we use a modified 
AR(1) process, 

St =pso Xs + (1 - P)st, (5) 

where st is the true index level innovation, so is the observed index level 
change, and the parameter k measures the degree of trading infrequency.16 
The value of k is assumed to lie between zero and one. As k approaches zero, 
trading becomes perfectly continuous. The observed change in the index level 
then fully captures the contemporaneous true index innovation st, which is 
assumed to be a mean zero, serially uncorrelated shock variable with a 
homoskedastic variance, (TS2.7 At the other extreme, as k approaches one, 
infrequent trading of index stocks becomes increasingly severe. The last trade 
for a typical stock in the index took place in some previous period. In fact, the 
structure of equation (5) implies that some stocks may not have traded for 
many periods, though the likelihood of that event declines geometrically with 
the order of the lag. 

The process governing observed futures price changes is modeled differ- 
ently. Because the futures contract is a single security, its observed price 
changes are not smoothed by infrequent trading of the component stocks. 
Observed futures prices, on the other hand, may appear to bounce as succes- 
sive transactions are executed at bid and ask price levels. Roll (1984) shows 
that the bid-ask bounce induces negative serial covariance in the observed 
price changes series. This bounce can be modeled as an MA(1) process, 

fto = ft + Oft- 1, ~ (6) 

where ft is the true futures price innovation, fto is the observed index level 
change, and 0 is the bid-ask bounce parameter. The innovation ft is assumed 
to be a mean zero, serially uncorrelated shock variable with a homoskedastic 
variance, 2-,A. The bid-ask bounce parameter is negative and has the range 
- 1 < 0 < 0. Holding other factors constant, the larger the bid-ask spread, 
the greater the absolute value of 0. 

C. Observed Price Change Variances 

The models of the observed index level and the observed futures price 
changes (equations (5) and (6)) help identify certain characteristics of the 
variance of observed price changes. The variance of observed changes in the 

16 Appendix A contains the derivation of the modified AR(1) process. The qualifier, "modified," 
is used, because the lagged error term does not have the standard coefficient of one. The modified 
process is computationally equivalent, of course, to a standard AR(1). 

17 The zero mean assumption is made for algebraic convenience only. None of the subsequent 
results rely on this assumption. 
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stock index level, for example, is 

(TS0 + )(TS* (7) 

(See Appendix B.) Note that the variance of the observed index level changes, 
(TSO? is always less than the variance of the true index level innovations, a2s 
as long as the infrequency parameter is within its defined range (i.e., 0 < 4 < 
1). Observed stock prices, being last reported transaction prices, often trail 
actual market movements and therefore smooth the movements of the ob- 
served index level. This smoothing of index level changes reduces observed 
volatility relative to true volatility. To illustrate the relative size of the 
variance of observed index level changes, consider the autocorrelation esti- 
mate of 0.128 reported for the fifteen-minute interval in Table I. Using this 
value to approximate 4, the variance of observed index level changes under- 
states the true value by nearly 23 percent. 

The variance of the observed changes in the futures price is 

2fo = (1 + 02)oTf2. (8) 

Since the variance of the observed futures price changes, (Tf~ 2 is the sum of 
two components-the variance of true price changes and the variance of the 
price movements from bid to ask levels-the variance of the observed futures 
price changes index is greater than the variance of the true futures price 
changes as long as the bid-ask spread irn the futures market is economically 
significant (i.e., 0 < 0). The larger is the bid-ask spread, the greater is o2A. 

The estimated first-order autocorrelation of futures price changes reported 
earlier in Table I, however, shows that the effect of the bid-ask spread is 
trivial. The autocorrelation using fifteen-minute price changes (where the 
bid-ask price effect should be greatest) is - 0.029 over the entire sample 
period. In other words, the variance of observed futures price changes is only 
about 0.08 percent larger than the true variance.18 

Taken together, relations equations (7) and (8) imply that the ratio of the 
variance of observed futures price changes to variance of observed index level 

2 

changes, (Ro )2 _ 
TOf 0 

L changes, (R0)2- f2' is greater than one where the variances of the innova- 

tions of the futures and the index are, in fact, equal (i.e., (0f2 = (TS2). 

PROPOSITION 1: If the bid-ask spread in the futures market is economically 
significant (0 < 0), if the stocks within the index portfolio trade infrequently 
(4p> 0), and if the innovations of the futures and the index have the same 
variance (oy!2 = o-S2), the variance ratio of observed futures price changes to 
observed index level changes is greater than one. 

18 The first-order autocorrelation of the observed futures price changes is 0/(1 + 02 ). Equating 
this expression to - 0.029 and solving, we find that 0 is - 0.02902 and hence (1 + 02) iS 1.0008. 
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Proof of Proposition 1: Since 4 > 0, the variance ratio is 

(RO)2 -f ~ _(1 + 02)of2 (1 + 02) 

(R?) -- 2 > ( - ) - >1. 

Q.E.D. 

In other words, microstructure effects alone can cause the variance ratio of 
observed futures price changes to observed index level changes to exceed one. 

The evidence reported in Table I is consistent with Proposition 1. All of the 
reported standard deviation (variance) ratios of the observed price changes, 
R?, exceed one, independent of the interval length and sample period. Since 
the autocorrelation of the futures price changes is near zero as noted above, 
the standard deviation ratio results imply that the infrequent trading of 
stocks within the index portfolio is a more serious concern than the bid-ask 
price effect in the futures. 

D. Dynamics of Observed Basis Changes 

We turn now to the primary concern of this study-the autocorrelation of 
changes in the observed basis, b = fto - so. In particular, we show that our 
simple microstructure models (equations (5) and (6)) can explain not only the 
mean reversion in the observed basis but also the increase in mean reversion 
that has been experienced in recent years. 

The first-order autocorrelation coefficient of bo is defined below: 

PROPOSITION 2: The first-order autocorrelation of observed basis changes in 
terms of the true underlying parameters is 

Cov(b', bo 1) 
p1b' Var(bo) 

fOo-2 - o(1 - 4))O(fS - 

((1 
- 

())(1 
+ 

24))OfS 
+ 1+ 2 

/ 1 -?+ \ '.* (9) 

(1 + 02)f2 + 2- 2(1 - 4))(1 + 04))fs 

Proof of Proposition 2: See Appendix B. 

If the bid-ask spread in the futures market is economically insignificant 
(0 = 0) and if the stocks within the index portfolio trade continuously (4) = 0), 
the numerator in equation (9) and hence the first-order autocorrelation of 
observed basis changes are zero. First-order autocorrelation vanishes only 
where the microstructure effects of bid-ask spreads and infrequent trading 
are absent. 
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Equation (9) shows that the first-order autocorrelation of observed basis 
changes is a function of the five parameters 4), 0, o-f , o-a, and o-fs For greater 
insight into the meaning of Proposition 2, we recast equation (9) in terms of 
the contemporaneous correlation instead of contemporaneous covariance and 
then reduce the parameter space. Substituting the correlation expression, 

afs Pfs f s, we get 

pl(b ) 

0 2 - 0(1 - 4))Pf'o-fo - 4)(1 - 4))(1 + 6))Pfsowfu-s + 1 +)(2 
1 + 4) S 

(1 + 02)o72 + + 2)os2 - 2(1 - 4)(1 + 64))pfsJ-fJs 

(10) 

Next, we simplify. To begin, we assume that the variance of true futures 
price innovations equals the variance of true index innovations (i.e., 27A = C2) 

and that the futures price innovations and true index level innovations are 
perfectly positively correlated (i.e., Pfs = + 1). Indeed, if the riskless rate of 
interest and the dividends on the stock index portfolio are certain, the 
absence of costless arbitrage opportunities in the marketplace will ensure 
that these conditions hold. Also, given the absence of meaningful autocorrela- 
tion in the observed futures price changes, we assume 0 = 0. 

PROPOSITION 3: If the bid-ask spread in the futures market is economically 
insignificant (6 = 0), if the stocks within the index portfolio trade infrequently 
(4)> 0), and if the innovations of the futures and the index have the same 
variance (f = (2) and are perfectly positively correlated (Pfs = + 1), the 
first-order autocorrelation of observed basis changes is 

p1(bg) = 2 (11) 

Proof of Proposition 3: See Appendix B. 

Proposition 3 implies that the first-order autocorrelation in observed basis 
changes is always negative over the admissible range of values for the 
infrequency parameter 4 (i.e., 0 < 4 < 1). Where 4 = 0 and hence is outside 
the admissible range, the variance of the basis changes is zero,19 so the 
autocorrelation changes are undefined. Proposition 3 also implies that as 4 
becomes small the autocorrelation in basis changes becomes more negative. 
Apparently, infrequent trading has relatively less effect on the serial covari- 
ance of observed basis changes than it does on the variance. In sum, under 
plausible assumptions about the true, but unobservable, stock index futures 
basis (i.e., of = os and Pfs = + 1), spurious mean reversion in the basis is the 

19 To see this, set 0 ==0, pfs, = + 1, and o0f = o-, in the denominator of equation (11). 
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rule rather than the exception. Moreover, the mean reversion becomes greater 
as the frequency of stock market trading increases! 

Now, we relax the certainty assumptions regarding the interest rate and 
the dividends of the index portfolio. If the interest rate or the dividends are 
uncertain, the standard deviation of the futures price innovations will exceed 
the standard deviation of the index innovations (i.e., of > os) and the contem- 
poraneous correlation between the innovations of the futures and the index 
will be less than one (i.e., Pfs < 1).20 To provide greater generality in our 
results, therefore, we write equation (10) as follows: 

PROPOSITION 4: If the bid-ask spread in the futures market is economically 
insignificant (0 = 0) and if the stocks within the index portfolio trade infre- 
quently (4 > 0), the first-order autocorrelation of observed basis changes is 

pb= -Rp(1 - 02) + /(l -) (12) 
t R2(1 + 4) + (1-4)-2(1_ 02)Rp' 

where the subscripts of the contemporaneous correlation p have been dropped 
for convenience and R is the ratio of the standard deviations of the true 

innovations of the futures and the index R = '. 
OS0 

Proof of Proposition 4: See Appendix B. 

Equation (12) has three parameters-0, p, and R. To understand its 
implications, consider Figures 2 and 3. In Figure 2, the ratio of the standard 
deviation of the futures price innovations to the standard deviation of index 
level innovations is set equal to 1.1. The first-order autocorrelation in the 
observed basis changes is shown for values of the autoregressive parameter, 
0, between zero and one and for values of the contemporaneous correlation 
parameter, p, between zero and one. In Figure 3, the ratio of the standard 
deviation of the futures price innovations to the standard deviation of index 
level innovations, R, varies between 0.5 and 1.5, and the contemporaneous 
correlation, p, varies between zero and one. The autoregressive parameter, 4, 
is set equal to 0.1. 

Figures 2 and 3 show that the first-order autocorrelation of observed basis 
changes depends critically on the configuration of the parameters p, 4, and 
R. Figure 3 shows, for example, that, where p = + 1, the theoretical autocor- 
relation function p1(b ) is unstable for values of R close to 1.0 (i.e., where 
o-f = o,), even though the value of 4 is very small. Figure 2 shows that even 
when p is close to 1.0, a value of R slightly above one can induce very large 
spurious negative autocorrelation even though the value of 4 is near zero. 

20 Such is also the case for commodity futures, where "conventional wisdom" has it that futures 
price change variance is greater. Samuelson (1976), for example, shows that, if the spot price 
follows a mean reversionary process, the variance of futures prices changes increases as the 
contract approaches maturity. Empirical support for this view can be found in Miller (1979), 
Rutledge (1976), and Powers (1970), among others. 
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Figure 2. First-order autocorrelation as a function of the infrequent trading and 
contemporaneous correlation. First-order autocorrelation of observed basis changes, p1(bt), 
as a function of the infrequent trading parameter, p, and the contemporaneous correlation 
between innovations to the stock index level and the futures price innovation, p. The ratio of the 
standard deviation of the futures price innovation to the standard deviation of the index level 
innovation, R, equals 1.1. The values of p and + range between 0 and 1. 

(b) -+Rp(1 _ 0p2) + 4(1 - + 
o(b 03R2(1 + p) + (1 - - 2(1 - c2)Rp 

Figures 2 and 3 also show that our modeled microstructure effects can even 
produce positive autocorrelation in the observed basis changes, though only 
in the parameter regions where the contemporaneous correlation between the 
index and the futures, p, is low and/or where the ratio of the standard 
deviations, R, is less than one. For the S&P 500 futures basis, neither of 
these conditions is realistic. 

An important implication of Figures 2 and 3 is that strong negative 
first-order autocorrelation in observed basis changes may be observed even 
when stocks in the index portfolio trade nearly continuously (i.e., + 0 , but 

+ 0& ). When positive contemporaneous correlation p is coupled with values 
of the standard deviation ratio R in excess of one, strong negative first-order 
autocorrelation arises. Because infrequent trading of the stocks in the index 
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Figure 3. First-order autocorrelation as a function of contemporaneous correlation 

and the ratio of standard deviations. First-order autocorrelation of observed basis changes, 
plb ,as a function of the contemporaneous correlation between the innovations to the stock 

index level and the futures price, p, and the ratio of the standard deviation of the futures price 
innovationl to the standard deviation of the index level innovationl, R. The infrequent trading 
parameter, 4, equals 0.1. The value of p ranges between 0 and 1, and the value of R ranges 
between 0.5 and 1.5. 

-lRp(1 - (p2) + +(1 - 4)) 
p1(bt ) = R2(1 + (/) + (1 - 4)) - 2(1 _-/2R 

portfolio is well documented (i.e., 0 ?< < 1), negative and significant values 
of first-order autocorrelation in the observed basis changes p1(bt ) are to be 
expected. The predicted mean reversion is merely a statistical artifact, how7- 
ever, and has nothing to do with the actions of index arbitragers. 

E. Observed Autocorrelation in Terms of Observed Parameters 

Propositions 2 and 4 express the first-order autocorrelation of observed 
basis changes in terms of the true (unobserved) parameters o> o, s and Pfs* 

While theory guides us as to plausible values for the contemporaneous 
correlation, p, and for the ratio of the standard deviations, R, expressing the 
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functional forms of the propositions in terms of the directly observable 
parameters, ofo, aso, and Pfoso, is also useful. 

The analogue to Proposition 2 in terms of the observable parameters is: 

PROPOSITION 5: The first-order autocorrelation of observed basis changes in 
terms of the observed parameters is 

0 2 0 

(R?) - OpRO - kp?R? + 
pl(bo) = , 

21+ 
0p(13) 

p (b?) - - (Ro)2 + 1 - 2p?R 0 

where 

- Orf oso (1 + ?0)V1 _ 02 
p - and p? <- 

foSO% 21+02 

Proof of Proposition 5: See Appendix B.21 

This general proposition can be simplified further by setting 0 equal to 0, just 
as we simplified Proposition 2 to get Proposition 4. The analogue to Proposi- 
tion 4 for the observed parameters is then: 

PROPOSITION 6: If the bid-ask spread in the futures market is economically 
insignificant (0 = 0) and if the stocks within the index portfolio trade infre- 
quently (s > 0), then the first-order autocorrelation of observed basis changes 
in terms of the observed parameters is 

p (bd) = - p( R0-1 j (14) 
where 

p0 = af%O and p?<< 01_2j. 

Proof: Set 0 = 0 in equation (13) and factor p. Q.E.D. 

To show what Proposition 6 implies, we set the autoregressive parameter 4 
equal to 0.1 and plot in Figure 4 the first-order autocorrelation of the 
observed basis changes for observed parameter values of p0 between 0.75 and 
0.99 and R? between 1 and 1.5. Note that almost the entire surface of 
autocorrelation is negative for the observed parameter ranges. The negative 
autocorrelation is particularly high, moreover, where the observed standard 
deviation ratio R? is slightly larger than one and the observed contemporane- 
ous correlation po is near one. The ranges of the observed parameters used in 
this figure are consistent with the empirical results in Table I. The figure 

21 The condition on the contemporaneous correlation p ensures that the observed autocorrela- 
tions do not fall outside the interval (-1, 1). 
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Figure 4. First-order autocorrelation as a function of observed contemporaneous 

correlation and the ratio of observed standard deviations. First-order autocorrelation of 
observed basis changes, p1(bo), as a function of the contemporaneous correlation between the 
observed index level change and the observed futures price change, p?, and the ratio of the 
standard deviation of the observed futures price change to the standard deviation of the observed 
change in the stock index level, R?. The infrequent trading parameter ( equals 0.1. The value of 
p0 ranges between 0.75 and 0.99, and the value of R? ranges between 1.0 and 1.5. 

[ p?R?-l 1 whrp? 1 l(2 

implies that negative, first-order autocorrelation in the S&P 500 basis changes 
is, indeed, the expected behavior. 

IV. Empirical Investigation 

In Section III, we presented our theory of observed basis change pre- 
dictability and showed that negative first-order autocorrelation in observed 
basis changes is expected for a wide range of plausible parameter configura- 
tions. In this section, we put a key implication of our simple model of 
infrequent trading to a further test. 



504 The Journal of Finance 

The test involves fitting an ARI(1) model to the fifteen-minute index level 
changes each day, 

StO=aCY + ost_l 1+ t (15) 

and then using the residuals from the regression Et to generate estimates of 
the innovations in the index level, that is, 

et = tA/(1 - ) (16) 

The estimated innovations of the index are then substituted for the observed 
index level changes in the computation of the basis changes. If we are right, 
this purging of the infrequent trading effects should substantially reduce the 
negative first-order autocorrelation in observed basis changes. The results of 
these tests are in Table V. For convenience, the observed index change results 
from Table I are also reported. 

Note first that the autocorrelation for the purged index innovations is 
indeed now much lower than for observed index changes. For the overall 
sample period, the index innovations have first-order autocorrelation of 0.039, 
while the observed index changes have autocorrelation of 0.128. The year-by- 
year results are generally consistent with those of the overall sample period, 
with the index innovations always being less autocorrelated. In the early 
years of the sample, however, significant positive autocorrelation remains in 
the index innovations even after purging for infrequent trading effects using 
the modified AR(1) model, suggesting that the effects of infrequent trading 
are more complex than our simple model can capture. Our model assumes, 
among other things, that the trading frequency parameter 6 is constant 
throughout each trading day, despite a wealth of emipirical evidence showing 
that trading volume is higher at the beginning and at the end of each day 
than during the day.22 We must, however, leave to future research, any 
further attempts to allow for differential trading rates within each day. Our 
purpose here, after all, is not to develop the definitive model of infrequent 
trading, but simply to illustrate how the effects of infrequent trading can help 
explain some otherwise puzzling behavior in observed basis changes. 

The key result of our applying the modified AR(1) to allow for infrequent 
trading is a substantial drop in the negative first-order autocorrelation in the 
basis changes for the overall sample period. Where observed index level 
changes had led to an autocorrelation of -0.369 in the basis changes, the 
index level innovations now show autocorrelation in the basis of only - 0.252. 
To gauge the importance of this reduction, note that the square of the 
first-order autocorrelation coefficient is a good approximation to R2. Since the 
true R2 is zero if basis changes are a random walk (e.g., if both the stock 
index and the futures are measured without microstructure effects), the R2 
has been reduced by nearly 47 percent (= 0.2522/0.3692 - 1)-an impres- 
sive drop considering the simplicity of the infrequent trading model applied. 

22 See, for example, Wood, McInish, and Ord (1985), Harris (1986), and Foster and Viswanathan 
(1993). 
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Table 
V 

Properties 
of 

Observed 

S&P 

500 

Basis 

Changes 

and 

S&P 

500 

Basis 

Innovations 

Estimated 

first-order 

autocorrelation 
( 

,) 
of 

observed 

S&P 

500 

index 

level 

changes 

(sW), 

S&P 

500 

futures 

price 

changes 

(f?), 

S&P 

500 

index 

basis 

changes 

(b?), 

estimated 

contemporaneous 

correlation 
( 

po), 

and 

the 

ratio 
of 

the 

estimated 

standard 

deviations 

(R?) 
of 

observed 

futures 

price 

changes 

to 

index 

level 

changes 

computed 

over 

15-minute 

intervals. 

Only 

price 

changes 
of 

the 

nearby 

futures 

contract 

with 

more 

than 

five 

days 
to 

expiration 

are 

used. 

Overnight 

price 

changes 

and 

the 

first 

price 

changes 

each 

day 

are 

excluded. 

Basis 

change 

innovations 

are 

computed 
by 

purging 

infrequent 

trading 

effects 

from 

the 

index 

level 

changes 

using 

an 

AR(1) 

model. 

The 

sample 

period 

extends 

from 

April 

21, 

1982 

through 

March 

31, 

1991. 

Period 

No. 
of 

Basis 

Changes 

No.of 

Basis 

Innovations 

Begins 

Ends 

Observations 

p,(f0) 

,W(s0) 

p,(b0) 

p? 

R0 

Observations 

p,(fo) 

pl(s0) 

pl(b?) 

p? 

1 
R0 

4/82 

3/91 

51,323 

-0.029 

0.128 

-0.369 

0.683 

1.354 

49,069 

-0.031 

0.039 

- 

0.252 

0.604 

1.107 

4/82 

12/82 

3,913 

0.078 

0.493 

-0.098 

0.512 
- 

2.155 

3,735 

0.083 

0.140 

-0.181 

0.606 

1.291 

1/83 

12/83 

5,544 

0.025 

0.507 

-0.198 

0.535 

1.764 

5,292 

0.028 

0.130 

-0.220 

0.576 

1.026 

1/84 

12/84 

5,566 

-0.020 

0.377 

-0.285 

0.573 

1.554 

5,313 

-0.014 

0.115 

-0.194 

0.526 

0.966 

1/85 

12/85 

5,673 

-0.055 

0.217 

-0.337 

0.587 

1.448 

5,421 

-0.057 

0.038 

-0.226 

0.487 

0.948 

1/86 

12/86 

6,063 

-0.025 

0.115 

-0.385 

0.638 

1.355 

5,810 

-0.032 

0.003 

-0.339 

0.593 

1.222 

1/87 

12/87 

5,944 

-0.017 

0.107 

-0.410 

0.691 

1.316 

5,696 

-0.017 

0.083 

-0.204 

0.568 

1.026 

1/88 

12/88 

6,059 

0.021 

0.166 

-0.405 

0.736 

1.275 

5,806 

0.029 

-0.009 

-0.333 

0.663 

1.084 

1/89 

12/89 

5,670 

-0.021 

0.097 

-0.399 

0.706 

1.349 

5,418 

-0.046 

-0.007 

-0.158 

0.622 

1.101 

1/90 

12/90 

5,549 

- 

0.086 

0.054 

-0.424 

0.738 

1.258 

5,297 

-0.079 

0.003 

- 

0.333 

0.661 

1.178 

1/91 

3/91 

1,342 

-0.156 

0.067 

-0.444 

0.689 

1.373 

1,281 

-0.170 

-0.002 

-0.339 

0.633 

1.368 
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The year-by-year results also show reductions in the level of autocorrelation, 
except for 1982 and 1983, when, as noted earlier, the modified AR(1) model 
performed less well. 

The ratio of the standard deviation of futures price changes to index level 
changes is also reduced. Where the ratio of observed futures price change 
standard deviation to index level change standard deviation had been 1.354, 
the index level innovations now yield a ratio of only 1.107. The high ratio in 
the raw series had reflected the smoothing of the observed index level series 
by the infrequent trading of stocks within the index portfolio. When the 
modified AR(1) model is used to back out the estimated index innovations, 
the innovations have more volatility than the observed index changes, and 
the ratio of futures to index standard deviations is reduced. 

In summary, even a simple model of infrequent trading such as the 
modified AR(1) model can control, to a considerable degree, the effects of 
infrequent trading of the stocks within the index portfolio. With this control 
in place, the negative first-order autocorrelation in basis changes is notice- 
ably reduced. 

V. Summary and Conclusions 

The conventional wisdom is that the mean reversion in the observed stock 
index basis, documented in many studies, traces to index arbitrage. This 
study shows, however, that index arbitrage is not the only explanation. We 
show, in fact, that under reasonable assumptions about infrequent trading of 
index portfolio stocks, strong negative first-order autocorrelation could be 
expected even if no formal arbitrage ever occurred. After all, there are people 
who can trade in both markets, and they can be expected to shift their 
trading as circumstances warrant. 

But, if the predictability of basis changes is mainly a statistical illusion, as 
we have argued, why do we see so much index arbitrage on the NYSE? (See, 
for example, Sofianos (1990) and Neal (1992).) The answer, we have shown, is 
that we don't really see all that much of it. Formal index arbitrage during 
our sample period accounts for only about four percent of NYSE volume. And 
such formal arbitrage as we do see appears to serve mainly to counteract the 
additional drag in index adjustment induced by the very special set of rules 
that the NYSE imposes to create the impression of continuity in the path of 
prices. In a pure dealer market such as the spot market in Treasury bonds, 
no actual arbitrage transactions are needed to keep the spot and futures 
prices in line. The dealers, upon observing a jump in futures price, would 
simply mark their own stale quotes up or down to match. An exploitable gap 
does not emerge, because, effectively, the spot dealers "price off the futures" 
and hence eliminate any profit opportunity directly. 

On the NYSE, by contrast, the specialists normally move their quotes only 
in response to actual transactions. They are enjoined by the terms of their 
franchise, moreover, to keep successive prices within one-eighth of the previ- 
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ous price to the maximum extent feasible. And they do succeed in doing so 
more than 95 percent of the time even though they may have to face large 
changes in their own inventories as they walk prices up or down an eighth at 
a time. The speed of adjustment of prices is slowed also by limit orders of 
other investors resting in the specialist's book. These orders cannot be made 
contingent on a jump in the futures price but must specifically be lifted and 
reset, a process that cannot always be implemented quickly, particularly 
when trading gets hectic. These institutionally induced lags in the adjust- 
ment of stock prices to jumps in the futures prices create a gap that fast 
moving arbitragers can exploit at the expense of the NYSE's specialists and 
limit-order customers.23 

Although these stock market/futures market interactions have been the 
main focus of this article, essentially the same ingredients can be found in 
other market settings. The back months of most futures contracts, for exam- 
ple, are far less liquid than the front months. We suspect, therefore, that 
changes in calendar spreads (and undoubtedly also in intercommodity 
spreads) will exhibit the same negative autocorrelation we have documented 
for basis changes in the S&P 500 index. 

More generally, our analysis suggests similar elements are likely to creep 
in whenever the price-change or return series of two securities or portfolios of 
securities are differenced. Differencing neutralizes the common market fac- 
tors and highlights the differences in the microstructure of the markets in 
which they trade. And, as we have seen, even seemingly small differences in 
trading frequency or other microstructure parameters can seriously distort 
the statistical characteristics of the differenced series, particularly when 
returns are measured over very short intervals. This news will hardly be 
comforting to users of the increasingly available intraday price series. But at 
least they've been warned. 

Appendix A 

Derivation of Modified Autoregressive Process for Observed Index Level 
Changes 

This appendix presents the derivation of the modified first-order autore- 
gressive process that describes observed level changes, that is, 

so = oso 1 + (1 - b)st. 

23 Some dealer markets like NASDAQ in the United States or ARIEL in London require 
dealers to guarantee a minimum size (not always trivially small) at their posted quotes. Similar 
guarantees apply in other automatic execution systems like RAES (of the CBOE). To that extent, 
the dealers or the system face a stale-quote, pick-off problem similar to that at the NYSE. The 
much discussed, heavy use of index arbitrage in Japan is of quite a different kind. It appears to 
be less a matter of arbitraging prices between the spot and futures markets than of arbitraging 
between the retail stock commissions and the much lower commissions on futures. See Miller 
(1992). 
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where st is the true index level change, so is the observed index level change, 
and f is the trading infrequency parameter (i.e., the higher is 4, the lower is 
the frequency with which the stocks in the index trade). 

The derivation proceeds in three distinct steps, with each step further 
reducing the frequency with which stocks in the index portfolio trade. First, 
we show the structure of observed index level changes when individual stocks 
trade continuously. In this case, each stock trades at exactly the endpoint of 
the price-change measurement interval. Next, we consider the case of "non- 
synchronous trading," where each stock trades at least once every interval 
but not necessarily at the endpoint. Finally, we consider the case of "nontrad- 
ing," where stocks may not trade for several consecutive intervals. Through- 
out this appendix, we maintain the assumption that individual stock prices 
follow an arithmetic random walk with homoskedastic increments, which 
means that true stock price changes are white noise. 

Continuous Trading 

When stocks trade continuously, index level changes can be measured 
precisely. Since each stock trades at the end of each price change measure- 
ment interval, the observed stock price change, s7', equals the true stock 
price change, Sit, that is, 

S = Sit (Al) 

If wi represents the proportion of the index portfolio value accounted for by 
stock i, the observed index level change may be written 

n 

s E WiSit = Spt (A2) 
i=l 

where 
n 

Ew=l1, 
i= 1 

and n is the number of stocks in the index portfolio. 

Nonsynchronous Trading 

With nonsynchronous trading, all securities in the portfolio trade at least 
once during each interval but not necessarily at the endpoint.24 If a stock 
does not trade at the interval's endpoint, the observed stock price change in a 
particular period is attributable not only to true price change innovation in 
that period but also to true price change innovation in the previous period. To 
model this behavior, we assume that fraction k of the ith stock's observed 
price change soJt is stale and originates during period t - 1, while the 
remainder (1 - k) originates during period t. Hence, we write the observed 

24 This type of environment is used in the work of Scholes and Williams (1977a, 1977b), for 
example. 
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stock price change as 

Si = (1 - b)sit + si, t-1. (A3) 

If b = 0, trading is continuous. The observed price change fully captures the 
contemporaneous true price change as we saw in equation (A2). At the other 
extreme, if (b = 1 the last stock trade took place at the endpoint of interval 
t - 1 and all of the observed price change occurs with one lag.25 

With each stock's observed price change dynamics described by equation 
(A3), the observed index level change dynamics can be obtained by applying 
the index portfolio weights and summing across stocks. Under nonsyn- 
chronous trading, the observed index level changes may be written 

n 

p= E it 

i = 1 
n 

- E wi[(1 - b)sit + (bsi]t-l 
i=l1 

n n 

- (1 - (b) isit + b wisi't-i 
i=l i=l 

- (1 - )spt + ksp t-1. (A4) 

Equation (A4) implies that observed index level changes follow a modified 
MA(1) process. The term "modified," is used because the lagged index innova- 
tion has a nonstandard coefficient of (P. 

Nontrading 

Under nontrading, stocks may not trade for several consecutive intervals. If 
all stocks traded at least once every q intervals, the nonsynchronous trading 
analysis above could be reworked to show that observed index level changes 
would follow an MA(q) process.26 Unfortunately, this means that the ob- 
served index level change process depends on q different parameters, making 
it unwieldy. A simpler, alternative approach is to adopt a framework similar 
to equation (A4) above. As in equation (A4), the observed index level change 
depends on the contemporaneous change in the true index level weighted by 
1 - (P. In place of having the remaining weight on the lag be one true index 
level of change, however, we split the weight across an infinite number of 
lagged true index level changes, with the property that the weights decline 
geometrically with the order of the lag.27 More specifically, we write the 

25 For greater generality, 0 can be made security specific. See, for example, Cohen et al. (1978, 
1979) and Dimson (1979). 

26 See, for example, Muthuswamy (1990). 
27 Lo and MacKinlay (1990), for example, use this approach. The value (1 - P) can be 

interpreted as the probability of a trade taking place in a given interval. 
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observed index level change process as 

so= (1 -)s 

+ [(1 -_)pSPt_ + (1 - )2Sp t-2 + (1 - )P3Sp t-3 + ...], (A5) 

where the weights attached to the lag true index level changes sum to (. The 
benefit of invoking this assumption is that the term in squared brackets is 
simply Sp t- l , which means that the observed portfolio price change process 
may be written parsimoniously as 

0= (1- + Sp, (A6) 

Equation (A6) shows that observed index level changes follow a modified 
AR(1) process. Here the term, "modified," is used because the contemporane- 
ous innovation term has the coefficient (1 - p) rather than one. 

Appendix B 

Proofs of Selected Propositions 

Proof of Equation (7): 

So= oso1 + (1 -)St 

St? = (1 - LY 1( - O)st 

= (1 - k)[St + kSt_l + b2St-2 + 

J o2 = E(st?)2 

= -)2 [2 + (p2o-2 + 040-2 + ] 

(1- ()2 2 

(1 -4)2 2 

(1 - )(1 + p) A 
{1-++ 

= 
1 + 

Q.E.D. 

Proof of Proposition 2: First, consider the denominator term, 

Var(bt?) = Var(fto - so') 
2 2 

= Ofo +(_2 o-fs. 

We already have expressions Ur and so- in terms of the variances on the 
innovations (see equations (7) and (8)). To do the same for the covariance 
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term, 

oso = E(ftoso') 

= E [(ft + Oftf1)(1 - 0)(1 - LY'st 

- E[(ft + Oft-1)(1 - )(st + Ost_1 + 02st-2 + 

= (1 - O)E[ ftst + Okft-lst-1] 

= (1 - 0)(1 + 0P)ofs. 

Now, consider the numerator term for the lag one autocorrelation coefficient, 

Cov(bo, bo 1) = E[(fto - so')(fto1 - s 1)]. 

Using the lag operator L where LkXt = xt-k. the expression becomes 

E([ft+ott-l- (1 L) t][t 1+ Ot-2 1 L) t 1] 

=E[(ft +Oft-1)(ft-1 + Oft-2)] 

-(1 - k)E[(ft + Oft-1)(st-, + kst-2 + 02st 3...)] 

-(1 - p)E[(st + OSt_l + 0k2st2 + ..*)(ft-1 + Oft-2)] 

+ (1-) E[(st + Ost-i + 02st-2 + ...) 

x(st-1 + kSt-2 + 02St-3 + )] 

= HU2 _ o(l _ )a _ -(l)(_-()(1 + 0(0))a7 

+ 
?2 j 

_ 
0)2(o 

+ 
03 

+ 
05+ 

) 

OOf 
_ 

6(1 
_ Ok)Oa 

-p(1 
_ 0p)(1 

+ 0) 

= OTf - 69(1 - Pw)of5 - ?f(1 - s)(1 + 6p)Jfs + + (1 - S 

Assembling all the component terms and simplifying, 

2Of - 6(l - )O)a-f - t(1 - 0)(1 + p)aJf5 + )(1 - 

t)= 1 -- 2 
1 1- 2 2(1- 0)(1-4) 

+ f + (s 1-TS fs 

Q.E.D. 

Proof of Proposition 3: Setting 0 = 0 and af = aso2 equation (10) becomes 

-(l - O)pfs(r2 + -) 2 

1+ + cir22(1-k)pfs as (S 1 + ps 



512 The Journal of Finance 

Multiplying throughout by (1 + +)/or2, 

lb P pf (l - ?p2) + p(1 - 0) 

p1(bt) = 2 - 2(1 -_ 2 )Pfs 

Setting Pfs = + 1, 

p1(b') = 2 

Q.E.D. 

Proof of Proposition 4: Setting 0 = 0, equation (10) becomes 

-0(1-4b)Pfs Jf as + p(1 - 

pl(bt )= 1- 

f2 + 1 - 2(1 -P)Pfsoaf as 1 + p 

Multiplying throughout by (1 + 4)/oS2 and substituting R =U 

pl(b') = -4Rp(l - 02) + 4(1 - 0) 

t )=R2(1 + 4) + (1 - 0) - 2(1 - o )Rp 

Q.E.D. 

Proof of Proposition 5: Substituting expressions, 02 = ( 1 _ k) ? 

+2' adf=oso 

f 0 (1 - f)(1 + 00) into equation (9), it follows that 

0 2 0 

1 + 02(R0) 
- 

P+p0R P 
- p?R + 0 

p1(bt ) = (Ro 2 + 1 - 2p?R? 

Q.E.D. 
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