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Valuation of American Futures Options: Theory 
and Empirical Tests 
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ABSTRACT 

This paper reviews the theory of futures option pricing and tests the valuation principles 
on transaction prices from the S&P 500 equity futures option market. The American 
futures option valuation equations are shown to generate mispricing errors which are 
systematically related to the degree the option is in-the-money and to the option's time 
to expiration. The models are also shown to generate abnormal risk-adjusted rates of 
return after transaction costs. The joint hypothesis that the American futures option 
pricing models are correctly specified and that the S&P 500 futures option market is 
efficient is refuted, at least for the sample period January 28, 1983 through December 
30, 1983. 

FUTURES OPTION CONTRACTS NOW trade on every major futures exchange and 
on a wide variety of underlying futures contracts. The Chicago Mercantile 
Exchange, the Chicago Board of Trade, the New York Futures Exchange, and 
the Commodity Exchange now collectively have more than twenty options written 
on futures contracts, where the underlying spot commodities are financial assets 
such as stock portfolios, bonds, notes and Eurodollars, foreign currencies such as 
West German marks, Swiss francs and British pounds, precious metals such as 
gold and silver, livestock commodities such as cattle and hogs, and agricultural 
commodities such as corn and soybeans. Moreover, new contract applications are 
before the Commodity Futures Trading Commission and should be actively 
trading in the near future. 

With the markets for these new contingent claims becoming increasingly active, 
it is appropriate that the fundamentals of futures option valuation be reviewed 
and tested. Black [5] provides a framework for the analysis of commodity futures 
options. Although his work is explicitly directed at pricing European options on 
forward contracts, it applies to European futures contracts as well if the riskless 
rate of interest is constant during the futures option life.1 The options currently 
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trading, however, are American options, and only recently has theoretical work 
begun to focus on the American futures option pricing problem.2 

The purpose of this paper is to review the theory underlying American futures 
option valuation and to test it on transaction prices from the S&P 500 equity 
futures option market. In the first section of the paper, the theory of futures 
option pricing is reviewed. The partial differential equation of Black ([5]) is 
presented, and the boundary conditions of the American and European futures 
option pricing problems are shown to imply different valuation equations. For 
the American futures options, efficient analytic approximations of the values of 
the call and put are presented, and the magnitude of the early exercise premium 
is simulated. 

In the second section of the paper, the American futures option valuation 
principles are tested on S&P 500 futures option contract data for the period 
January 28, 1983 through December 30, 1983. Included are an examination of 
the systematic biases in the mispricing errors of the option pricing models, a test 
of the stationarity of the volatility of the futures price change relatives, and a 
test of the joint hypothesis that the American futures option models are correctly 
specified and that the S&P market is efficient. The paper concludes with a 
summary of the major results of the study. 

I. Theory of Futures Option Valuation 

An option on a futures contract is like an option on a common stock in the sense 
that it provides its holder with the right to buy or sell the underlying security at 
the exercise price of the option. Unlike a stock option, however, a cash exchange 
in the amount of the exercise price does not occur when the futures option is 
exercised. Upon exercise, a futures option holder merely acquires a long or short 
futures position with a futures price equal to the exercise price of the option. 
When the futures contract is marked-to-market at the close of the day's trading, 
the option holder is free to withdraw in cash an amount equal to the futures 
price less the exercise price in the case of a call and the exercise price less the 
futures price in the case of a put. Thus, exercising a futures option is like 
receiving in cash the exercisable value of the option. 

A. Assumptions and Notation 

Black [5] provides the groundwork for futures option valuation. Although his 
work is directed at pricing a European call option, it is general in the sense that 
the partial differential equation describing the dynamics of the call option price 
through time applies to put options as well as call options and to American 
options as well as European options. The assumptions necessary to develop 
Black's partial differential equation are as follows: 

2 Following Black's [5] seminal article, Moriarity, Phillips, and Tosini [18], Asay [1], Wolf [24], 
and others discussed the European futures option pricing problem. Other than the studies by Whaley 
[22] and Stoll and Whaley [21], the theoretical work on American futures options is unpublished and 
includes studies by Ramaswamy and Sundaresan [19] and Brenner, Courtadon, and Subrahmanyam 

[9]. 
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(Al) There are no transaction costs in the option, futures, and bond markets. 
These include direct costs such as commissions and implicit costs such 
as the bid-ask spread and penalties on short sales. 

(A2) Markets are free of costless arbitrage opportunities. If two assets or 
portfolios of assets have identical terminal values, they have the same 
price, and/or, if an asset or portfolio of assets has a future value which 
is certain to be positive, the initial value (cost) of the asset or portfolio 
is certain to be negative (positive). 

(A3) The short-term riskless rate of interest is constant through time. 
(A4) The instantaneous futures price change relative is described by the 

stochastic differential equation, 

dF/F = ,u dt + a dz, 

where ,u is the expected instantaneous price change relative of the futures 
contract, a is the instantaneous standard deviation, and z is a Wiener 
process. 

Assumptions (Al) and (A2) are fairly innocuous. Transaction costs are trivial 
for those making the market in the various financial assets, and available 
empirical evidence suggests investors behave rationally. Assumption (A3) may 
appear contradictory, since some futures options are written on long-term debt 
instrument futures contracts3 where the driving force behind the volatility of the 
futures price change relatives is interest rate uncertainty. The two interest rates 
are, to some degree, separable, however. Assumption (A3) describes the behavior 
of the short-term interest rate on, say, Treasury bills, while the volatility of T- 
bond futures prices, for example, is related to the volatility of the long-term U.S. 
Treasury bond forward rate.4 Assumption (A4) describes the dynamics of the 
futures price movements through time. It is important to note that no assumption 
about the relationship between the futures price and the price of the underlying 
spot commodity has been invoked.5 The valuation results presented in this 
section, therefore, apply to any futures option contract, independent of the nature 
of the underlying spot commodity. 

3The Chicago Board of Trade, for example, lists options on U.S. T-bond and T-note futures 
contracts. 

4A priori, the assumption of constant short-term interest rate is untenable for all option pricing 
models. A constant short-term rate implies a constant, flat term structure, with interest rate 
uncertainty having no bearing on the volatility of the underlying asset prices. Such is hardly the case. 
The validity of such option pricing models, however, need not be evaluated on the basis of their 
assumptions and can be judged on the merits of their predictions. 

5Note that Assumption (A4) defines the dynamics of the futures price movements with no reference 
to the relationship between the futures price and the price of the underlying spot commodity. Whether 
such an assumption is more appropriate for the futures price dynamics or the underlying spot 
commodity dynamics is an open empirical question. 

Assumption (A4) is consistent with the assumption that the underlying spot price, S, follows the 
stochastic differential equation. 

dS/S = a dt + of dz, 

where a is the expected relative spot price change, and a is the instantaneous standard deviation if 
there is (a) a constant, continuous riskless rate of interest, r, and (b) a constant, continuous 
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For expositional purposes, the following notation is adopted in this study to 
describe futures options and their related parameters: 

F = current futures price 
FT = random futures price at expiration 
C(F, T; X)[c(F, T; X)] = American [European] call option price 
P(F, T; X)[p(F, T; X)J = American [European] put option price 
eC(F, T; X)[ep(F, T; X)] = early exercise premium of American call [put] 
option 
r = riskless rate of interest 
T = time to expiration of futures options 
X = exercise price of futures options. 

B. Solution to Futures Option Pricing Problem 

Under the above-stated assumptions, Black demonstrates that, if a riskless 
hedge can be formed between the futures option and its underlying futures 
contract, the partial differential equation governing the movements of the futures 
option price (V) through time is 

1/2ff2F2F- rV + Vt = 0. (1) 

This equation applies to American call (C = V) and put (P = V) options, as well 
as European call (c = V) and put (p = V) options. What distinguishes the four 
valuation problems is the set of boundary conditions applied to each problem. 

C. European Futures Options 

The boundary condition necessary to develop an analytic formula for the 
European call option is that the terminal call price is equal to the maximum 
value of 0 or the in-the-money amount of the option, that is, max(O, FT- X). 
Black shows that, when this terminal boundary condition is applied to Equation 

proportional rate of receipt (payment), d, for holding the underlying spot commodity. To show this 
result, apply Ito's lemma to the cost-of-carry relationship, St = F e(r-d)(T-t, where Ft is defined in 
(A4). The expected futures price change relative, ,u, is equal to the expected spot price change relative 
less the difference between the riskless rate of interest and the continuous rate of receipt, a - (r - 
d), and the standard deviation, a, is the same for both the underlying spot commodity and futures 
price changes. 

The interpretation of d depends on the nature of the underlying spot commodity. For example, in 
the foreign currency futures market, d represents the foreign interest rate earned on the investment 
in the foreign currency. For agricultural commodity futures, d is less than zero and represents the 
rate of cost for holding the spot commodity (i.e., storage costs, insurance costs, etc.), and for stock 
index futures, d represents the continuous proportional dividend yield on the underlying stock 
portfolio. 

A continuous proportional dividend yield assumption may not be appropriate for a stock index 
since dividend payments are discrete and have a tendency to cluster according to the day of the week 
and the month of the year. With uncertain discrete dividend payments during the futures' life, the 
cost-of-carry relationship between the prices of the stock index and stock index futures is unclear, 
however, as long as (A4) holds for the futures price dynamics, the option pricing relationships 
contained in the paper will hold. 
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Figure 1. European and American Call Option Prices As a Function of the Underlying Futures 
Contract Price. 

(1) where c = V, the value of a European call option on a futures contract is 

c(F, T; X) = e-rT[FN(di) -XN(d2)] (2) 

where d1 = [ln(F/X) + 0.5o 2T]/o7iT, and d2 = d- oT, and where N( ) is the 
cumulative univariate normal distribution. When the lower boundary condition 
for the European put, max(O, X - FT), is applied to the partial differential 
Equation (1), the analytic solution is 

p(F, T; X) = e -rT[XN(-d2) - FN(-dD)], (3) 

where all notation is as it was defined above. 

D. American Futures Options 

The European call formula (2) provides a convenient way of demonstrating 
that the American call option may be exercised early. As the futures price 
becomes extremely large relative to the exercise of the option, the values of N(dj) 
and N(d2) approach one, and the European call value approaches (F - X)e-rT. 

But, the American option may be exercised immediately for F - X, which is 
higher than the European option value. Thus, the American call option may be 
worth more "dead" than "alive"6 and will command a higher price that the 
European call option. 

Figure 1 illustrates the value of the American call option's early exercise 
privilege. In the figure, F* represents the critical current futures price level where 
the American call option holder is indifferent about exercising his option imme- 
diately or continuing to hold it. Below F*, the value of the early exercise premium, 
ec(F, T; X), is equal to the difference between the American and European call 
functions, C(F, T; X) - c(F, T; X). Above F*, ec(F, T; X) is equal to (F - X) - 

c(F, T; X). Note that as the futures price becomes large relative to the exercise 
price, the European call option value approaches (F - X)e rT, and the early 
exercise premium approaches (F - X)(1 - e-rT). In other words, the maximum 

6 Merton [17] demonstrates that, because the exercisable value of an American call option on a 
nondividend-paying stock, S - X, is always below the lower price bound of the corresponding 
European option, S - Xe-rT, the American call option is always worth more alive than dead, and, 
therefore, will not be exercised early. 
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value the early exercise premium may attain is the present value of the interest 
income which can be earned if the call option is exercised immediately. 

Unlike the European option case, there are no known analytic solutions to the 
partial differential Equation (1), subject to the American call option on a futures 
contract boundary condition, C(F, t; X) > max(O, Ft - X) for all 0 c t < T, and, 
subject to the American put option on a futures contract boundary condition, 
P(F, t; X) > max(O, X - Ft) for all 0 c t c T. Usually, the valuation of American 
futures options has resorted to finite difference approximation methods.7 Ra- 
maswamy and Sundaresan [19] and Brenner, Courtadon, and Subrahmanyam 
[9], for example, use such techniques. Unfortunately, finite difference methods 
are computationally expensive because they involve enumerating every possible 
path the futures option price could travel during its remaining time to expiration. 

Whaley [23] adapts the Geske-Johnson [13] compound option analytic ap- 
proximation method to price American futures options. In addition to being 
computationally less expensive than numerical methods, the compound option 
approach offers the advantages of being intuitively appealing and easily amenable 
to comparative statics analysis. Unfortunately, even though the compound option 
approach is about twenty times faster than numerical methods, it is still not 
inexpensive because it requires the evaluation of cumulative bivariate and cu- 
mulative trivariate normal density functions. 

The analytic approximation of American futures option values used in this 
study is that derived by Barone-Adesi and Whaley [3]. The method is based on 
MacMillan's [16] quadratic approximation of the American put option on a stock 
valuation problem and is considerably faster than either the finite difference or 
the compound option approximation methods. 

The quadratic approximation of the American call option on a futures contract, 
as provided in Barone-Adesi and Whaley [3], is 

C(F, T; X) = c(F, T; X) + A2(F/F*)q2, where F < F*, and 

C(F, T; X) = F-X, where F > F*, (4) 

and where A2 = (F*/q2)11 -e rTMd1(F*)]%, d1(F*) = [ln(F*/X) + 0.5a2T]/ 
o_T, q2 = (1 + 11 + 4k)/2, and k = 2r/V[ 2(1 - e-rT)]. F* is the critical futures 
price above which the American futures option should be exercised immediately 
(see Figure 1) and is determined iteratively by solving 

F*- X = c(F*, T; X) + 1 - e-rT[dl(F*)])F*/q2 (4a) 

Although the valuation equation may appear ominous, its intuition is simple. 
For a current futures price below the critical stock price, F*, the American call 
value is equal to the European value plus the early exercise premium, as approx- 
imated by the term, A2(F/F*)q2. Above F*, the worth of the American call is its 
exercisable proceeds. 

'The first applications of finite difference methods to option pricing problems were by Schwartz 
[20] who valued warrants written on dividend-paying stocks and by Brennan and Schwartz [7] who 
priced American put options on nondividend-paying stocks. These techniques are reviewed in Brennan 
and Schwartz [8] and Geske and Shastri [15]. 
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The only parameter to the American option formula (4) which requires com- 
putational sophistication beyond that required for the European formula (2) is 
the determination of the critical futures price F*. To this end, Barone-Adesi and 
Whaley [3] provide an algorithm for solving (4a) in five iterations or less. 

The quadratic approximation of the American put option on a futures contract 
is 

P(F, T; X) = p(F, T; X) + A1(F/F**)q1, where F > F**, and 

P(F, T; X) = X-F, where F < F**, (5) 

and where A1 = -(F**/ql)f1 - e-rTN1-d(F**)I%, q1 = (1 - >/i + 4k)/2, and 
where all other notation is as it was defined for the American call, F** is the 
critical futures price below which the American futures option should be exercised 
immediately and is determined iteratively by solving 

X - F** = p(F**, T; X) - 1- erTN[-di(F**)]F**/ql. (5a) 

E. Simulation of Early Exercise Premium Values 

To demonstrate plausible magnitudes of the early exercise premium on Amer- 
ican futures options, the European and American models prices were computed 
for a range of option pricing parameters. The results are reported in Table I. It 
is interesting to note that out-of-the-money futures options have negligible early 
exercise premiums. For example, when the futures price (F) is 90, the riskless 
rate of interest (r) is 8 percent, and the standard deviation of the futures price 
relatives (a) is 0.15, an out-of-the-money call option with an exercise price (X) 
of 100 and a time to expiration (T) of 0.5 years has an early exercise premium of 
0.0106, only slightly more than 1 percent of the American option price. Even at- 
the-money options have small early exercise premiums which account for only a 
small percentage of the option price. Only when the option is considerably in- 
the-money does the early exercise premium account for a significant proportion 
of the price of the option. 

In summary, the theory of futures option valuation suggests that the early 
exercise privilege of American futures options contributes meaningfully to the 
futures option value. The simulation results, based on option pricing parameters 
that are typical for S&P 500 futures option contracts, suggest that this is true, 
but only for in-the-money options. 

II. Empirical Tests 

In this section, the performance of the American futures option pricing models 
is analyzed using transaction information for S&P 500 equity futures options. 
After the description of the data in the first subsection, the implied standard 
deviation methodology is discussed. Volatility estimates are made using nonlinear 
regression of observed futures option prices on model prices. The third subsection 
presents an examination of the systematic patterns in the models prediction 
errors. This analysis is motivated by the evidence reported in the stock option 
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Table 
I 

Theoretical 

European 

and 

American 

Futures 

Option 

Values: 

Exercise 

Price 

(X) 
= 

100 

Call 

Options 

Put 

Options 

Futures 

Futures 

Early 

Exercise 

Early 

Exercise 

Option 

Price 

European 

American 

Premium 

European 

American 

Premium 

Parametersa 

(F) 

c(F, 
T; 

X)b 

C(F, 
T; 

X)C 

ec(F, 
T; 

X) 

p(F, 
T; 

X)b 

P(F, 
T; 

X)C 

ep(F, 
T; 

X) 

r= 

0.08 

80 

0.0027 

0.0029 

0.0002 

19.6067 

20.0000 

0.3933 

a= 

0.15 

90 

0.2529 

0.2547 

0.0018 

10.0549 

10.1506 

0.0957 

T= 

0.25 

100 

2.9321 

2.9458 

0.0137 

2.9321 

2.9458 

0.0137 

110 

10.1752 

10.2627 

0.0875 

0.3732 

0.3756 

0.0024 

120 

19.6239 

20.0000 

0.3761 

0.0199 

0.0204 

0.0005 

r 
= 

0.12 

80 

0.0027 

0.0030 

0.0003 

19.4116 

20.0000 

0.5884 

a= 

0.15 

90 

0.2504 

0.2533 

0.0029 

9.9549 

10.1153 

0.1605 

T= 

0.25 

100 

2.9029 

2.9257 

0.0228 

2.9029 

2.9257 

0.0228 

110 

10.0740 

10.2205 

0.1465 

0.3695 

0.3734 

0.0039 

120 

19.4286 

20.0000 

0.5714 

0.0197 

0.0205 

0.0008 

r 
= 

0.08 

80 

0.3956 

0.3986 

0.0030 

19.9996 

20.2032 

0.2036 

a= 

0.30 

90 

1.9817 

1.9913 

0.0096 

11.7837 

11.8543 

0.0707 

T= 

0.25 

100 

5.8604 

5.8878 

0.0274 

5.8604 

5.8878 

0.0274 

110 

12.2527 

12.3237 

0.0710 

2.4507 

2.4624 

0.0116 

120 

20.4776 

20.6470 

0.1694 

0.8737 

0.8790 

0.0053 

r= 

0.08 

80 

0.0583 

0.0603 

0.0020 

19.2740 

20.0000 

0.7260 

a= 

0.15 

90 

0.8150 

0.8256 

0.0106 

10.4229 

10.6044 

0.1815 

T= 

0.50 

100 

4.0637 

4.1099 

0.0463 

4.0637 

4.1099 

0.0463 

110 

10.6831 

10.8584 

0.1753 

1.0752 

1.0887 

0.0134 

120 

19.4105 

20.0018 

0.5913 

0.1947 

0.1991 

0.0043 

'The 

notation 

used 
in 

this 

column 
is 
as 

follows: 
r 
= 

riskless 

rate 
of 

interest; 
a 
= 

standard 

deviation 
of 

the 

futures 

price 

change 

relative; 

and 
T 
= 

time 
to 

expiration. 

b 

The 

European 

futures 

option 

values 

are 

computed 

using 

the 

Black 

[5] 

pricing 

equations. 

'The 

American 

futures 

option 

values 

are 

computed 

using 

the 

Barone-Adesi 

and 

Whaley 
[3] 

analytic 

approximations. 
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pricing tests. In the fourth subsection, the hypothesis that the standard deviation 
of futures price change relatives is the same across call and put options is tested. 
The final subsection presents the results of a joint test of the hypothesis that the 
American futures option pricing models are correctly specified and that the S&P 
500 futures option market is efficient. 

A. Data 

The data used in this study consist of transaction information for the S&P 
500 equity futures and futures option contracts traded on the Chicago Mercantile 
Exchange (CME) from the first day of trading of the S&P futures options, 
January 28, 1983, through the last business day of the year, December 30, 1983. 
The data were provided by the CME and are referred to as "Quote Capture" 
information. Essentially, the data set contains the time and the price of every 
transaction in which the price changed from the previously recorded transaction. 
Bid and ask prices are also recorded if the bid price exceeds or the ask price is 
below the price at the last transaction. The volume of each transaction and the 
number of transactions at a particular price are not recorded. 

Two exclusionary criteria were applied to the Quote Capture information. 
First, bid and ask price quotes were eliminated because they do not represent 
prices at which there were both a buyer and seller available to transact. Both 
sides of the market transaction were necessary within the market efficiency test 
design. Second, futures options with times to expiration in excess of 26 weeks 
were excluded. The trading activity in these options and their underlying futures 
contracts was too sparse to warrant consideration with the market efficiency 
test. What remained was a sample of 28,736 transactions, 21,613 in the nearest 
contract month, and 7,123 in the second nearest contract month. 

The futures option pricing models require the futures price at the instant at 
which the option is traded. To represent the contemporaneous futures price, the 
futures price at the trade most closely preceding the futures option trade is used. 
Because the S&P 500 futures market was so active during the investigation 
period, the average time between the futures and the subsequent futures option 
transactions was only 21 seconds. 

Table II offers a summary of the characteristics of the transactions contained 
in the 232-day sample period. Of the 28,736 transactions, 15,063 were call option 
transactions and 13,763 were puts. The at-the-money options appear to have 
been the most active, with 55 percent of the call option trades and 50 percent of 
the put option trades being at futures prices ?2 percent of the exercise price. 
Out-of-the-money options were more active than in-the-money options: 25 per- 
cent of total trades to 20 percent of total trades for calls and 42 percent to 8 
percent for puts, respectively. Over 64 percent of the transactions were on options 
with maturities of less than 8 weeks, verifying that most of the trading activity 
was in the nearest contract month. 

The yield on the U.S. Treasury bill maturing on the contract month expiration 
day8 was used to proxy for the riskless rate on interest. The yields were computed 

8 S&P 500 futures option contracts expired the third Thursday of the contract month until the 
June 1984 contract. Beginning with the June 1984 contract, the third Friday of the month is the 
expiration day. 
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Table 
II 

Summary 
of 

S&P 

500 

Futures 

Option 

Transactions 

during 

the 

Period 

January 
28, 

1983 

through 

December 
30, 

1983 

No. 
of 

Transactions 

Time 
to 

Expiration 

No. 
of 

Transactions 

Futures 

Price/ 

(in 

weeks) 

Exercise 

Price 

(FIX) 

Call 

Put 

Both 

(T) 

Call 

Put 

Both 

F/X 
< 

0.90 

11 

2 

13 

T<2 

2,307 

2,234 

4,541 

0.90 
' 

FIX 
< 

0.92 

77 

9 

86 

2 
c 
T 
< 
4 

2,375 

2,190 

4,565 

0.92 
c 

FIX 
< 

0.94 

339 

42 

381 

4 
c 
T 
< 
6 

2,567 

2,211 

4,778 

0.94 
c 

FIX 
< 

0.96 

1,014 

191 

1,205 

6 
c 
T 
< 
8 

2,480 

2,064 

4,544 

0.96 
c 

FIX 
< 

0.98 

2,281 

773 

3,054 

8 
< 
T 
< 
10 

1,708 

1,623 

3,331 

0.98 
c 

FIX 
< 

1.00 

4,091 

2,615 

6,706 

10 
c 
T 
< 
12 

1,479 

1,371 

2,850 

1.00 
c 

FIX 
< 

1.02 

4,260 

4,252 

8,512 

12 
c 
T 
< 
14 

1,255 

1,164 

2,419 

1.02 
c 

FIX 
< 

1.04 

1,783 

2,559 

4,342 

14 

T< 
16 

337 

445 

782 

1.04 
c 

FIX 
< 

1.06 

830 

1,524 

2,354 

16 

T< 
18 

222 

173 

395 

1.06 
c 

FIX 
< 

1.08 

241 

875 

1,116 

18 

T 
< 
20 

175 

90 

265 

1.08 
c 

FIX 
< 

1.10 

78 

453 

531 

20 
c 
T 

158 

108 

266 

1.10 
c 
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daily on the basis of the average of the T-bill's bid and ask discounts reported in 
the Wall Street Journal. 

B. Implied Standard Deviation Methodology 

The American futures option pricing models have five parameters: F, X, T, r, 
and u. Of these, four are known or are easily estimated. The exercise price, X, 
and the time to expiration, T, are terms of the futures option contract, and the 
futures price, F, and the riskless rate of interest, r, are easily accessible market 
values. The troublesome parameter to estimate is the standard deviation of the 
futures price change relatives. 

The methodology used to estimate the standard deviation of the futures price 
change relative is described in Whaley [22, pp. 39-40]. Observed futures option 
prices, Vj, were regressed on their respective model prices, Vj(a), that is, 

VI = VI(ar) + el. (6) 

where ej is a random disturbance term,9 each day during the sample period. All 
transaction prices for the day were used in each regression. The number of 
transactions used to estimate a in a given day ranged from 30 to 300, with the 
average number being 124. The estimates of a ranged from 0.1009 to 0.2176, with 
the average being approximately 0.1555. 

The time series of standard deviation estimates indicates that the volatility of 
the S&P 500 futures price relatives declined during 1983. During the first 116 
trading days of the sample period, the average estimate of a using the American 
model was 0.1711, while, during the last 116 days of the period, it was 0.1399. It 
is interesting to note that, during the same two subperiods, the S&P 500 Index 
rose by 15.07 percent and -0.65 percent, respectively.10 

C. Tests for Systematic Biases 

One way in which the performance of an option pricing model may be evaluated 
is by examining its mispricing errors for systematic tendencies. Whaley [22] 
demonstrates that, when the early exercise premium of the American call option 
on a dividend-paying stock is accounted for in the valuation model, the exercise 
price and time to expiration biases which had been documented for the European 
model disappear. Geske and Roll [14] later verify this result and also attempt to 
explain the variance bias. Here, the variance bias is not of concern since there is 
only one underlying commodity. The ability of the American futures option 
models to eliminate the first two biases, however, should be examined. 

The tests for systematic biases in the futures option pricing models involved 
clustering and then averaging the price deviations by the degree the option is in- 

9 The relationship between observed and model prices is not exact and is affected by: (a) model 
misspecification; (b) nonsimultaneity of futures and futures option price quotations; and (c) the bid- 
ask spread in the futures and futures option markets. If the residuals in the nonlinear regression (6) 
are independent and normally distributed, the resulting value of a is the maximum likelihood estimate. 

10 This evidence is consistent with the notion that the variance rate depends on the price of the 
underlying asset. 
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the-money of the option and by the option's time to expiration. Table III contains 
a summary of the results for the 15,063 call option and the 13,673 put option 
transactions in the sample. 

Both a "moneyness" bias and a "maturity" bias appear for the call option 
transaction prices of the sample. The moneyness bias is just the opposite of that 
reported for stock options.1" The further the call option is in-the-money, the 
lower is the model price relative to the observed price (i.e., out-of-the-money 
calls are overpriced by the model and the in-the-money calls are underpriced). 
This is true for the American models when all maturities are clustered together 
and when the intermediate-term and long-term options are considered separately. 
For the short-term options, the greatest mispricing occurs for the at-the-money 
calls, which appear dramatically underpriced relative to the model [e.g., for the 
American call option pricing model, the average value of C - C(F, T; X) is 
-0.1228]. 

The maturity bias for the calls is also just the opposite of that reported for call 
options on stocks. Here, the model prices are higher than the observed prices for 
short-term options and are lower than observed for long-term options. The 
relationship is not consistent across the moneyness groupings, however. For out- 
of-the-money calls, the mispricing is greatest for the intermediate term options 
with the model considerably overstating observed values [e.g., the average C - 
C(F, T; X) is -0.1372], and, for in-the-money options, the mispricing is still 
greatest for the intermediate term options, but with the models understating 
observed values [e.g., the average C - C(F, T; X) is 0.1175]. Overall, however, 
the maturity bias does not appear to be as serious as the moneyness bias for the 
sample of call option transaction prices. 

The average price deviations for the put options appear to have a more orderly 
pattern, with the relationships between average price deviation and the money- 
ness and maturity of the options monotonic. Like the call option results, the 
maturity bias takes the form of short-term options being underpriced relative to 
the model and long-term options being overpriced. Unlike the call option results, 
however, the maturity bias is almost as serious as the moneyness bias, and the 
moneyness bias takes the form of out-of-the-money options being overpriced 
relative to the model and in-the-money options underpriced. (Recall the put 
option is in-the-money where F/X < 1.) A possible explanation of this latter 
result is that floor traders engage in conversion/reversal arbitrage using the 
European put-call parity relationship,12 

c(F, T; X) - p(F, T; X) = (F - X)e rT. (7) 

" See, e.g., Black [4] or Whaley [22]. 
12 The European put-call parity relationship can be found in a variety of papers, including Black 

[5], Moriarity, Phillips, and Tosini [18], Asay [1], and Wolf [24]. In all of these studies, the futures 
contract underlying the option contract is treated like a forward, but no problems arise because the 
European option can be exercised only at expiration. 

For American futures options, the assumption of equivalence between forward and futures contract 
positions can lead to erroneous statements about futures option pricing. Some of these results are 
outlined in Ramaswamy and Sundaresan [19]. Stoll and Whaley [21] derive the put-call parity 
relationship for American futures options. 
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If the put-call parity relationship (7) is actively arbitraged, overpricing of in-the- 
money call options should result in overpricing of out-of-the-money put options, 
and underpricing of out-of-the-money call options should result in underpricing 
of in-the-money put options, or vice versa. 

One final note about the results in Table III is worthwhile. During the period 
examined, put options were overpriced on average while call options were under- 
priced. Obviously, this result is sensitive to the volatility estimate used to price 
the options, but, nonetheless, the difference between the average mispricing 
errors of the put and call option formulas would be approximately the same even 
if a different estimate of a were used. This peculiarity indicates that the market's 
assessment of the volatility of the relative futures price changes may be greater 
for puts than for calls and provides the motivation for the tests in the next 
subsection. 

D. Stationarity of Volatility Estimates Across Options 

To test the hypothesis that the standard deviation of futures price change 
relatives is the same in the pricing of call and put options on the S&P 500 futures 
contracts, the ratio, 

R = [SSEc(c) + SSE,(aT)]/SSE(o), (8) 

was computed each day during the sample period. In (8), SSEc(c) is the sum of 
squared errors realized by estimating the nonlinear regression (6) using only the 
call option transaction prices during the day, and SSEp(op) is the sum of squared 
errors using only the put option prices. SSE(o) is the sum of squared errors using 
both the call and put option prices. If the residuals of the regressions are 
independent and normally distributed, Gallant [12] shows that the test statistic, 

F= (n-2)(1-R), (9) 

is approximately distributed, F1,n2 .13 The results of these tests are reported in 
Table IV. 

The test results indicate that the null hypothesis that the volatility estimates 
are equal for calls and puts is rejected in 75 percent of the cases for the American 
model. The standard deviation of futures price relatives implied by call option 
prices is lower, on average, than that implied by put option prices. The cause of 
this anomaly is difficult to determine. One possible explanation is that the 
stochastic process governing the futures price movements is ill-defined, so the 
option pricing models are misspecified. Another is that perhaps two separate 
clienteles trade in call options and in put options. But, this latter explanation 
fails to account for the floor traders who could costlessly benefit from such a 
clientele arrangement. 

Regardless of the explanation, the anomaly may be only transitory. The only 
fact established so far is that the futures option pricing models do not adequately 
explain the observed structure of option prices. It may well be the case that the 

13 Barone-Adesi [2] uses a similar maximum likelihood test to compare the structural forms of 
competing option pricing models. 
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Table IV 

Frequency Distribution of Non-Rejection/Rejection 
of the Null Hypothesis that the Standard Deviations 
Implied by Option Prices Are Equal for Call-and-Put 
Options Using S&P 500 Futures Option Transaction 
Prices during the Period January 28, 1983 through 

December 30, 1983 
Hypothesisa' b Frequency 

Ho: The standard deviation of the futures price 59 
relatives for call options is equal to the 
standard deviation for put options. 

HA: The standard deviation of the futures price 173 
relatives for call options is not equal to the 
standard deviation for put options. 

Total 232 

a The probability level used in the evaluation of the test statistics 
is 5 percent. 

b The test statistic for the hypothesis test is F = (n - 2)(1 - R), 
where n is the number of option transactions and R = [SSEc(ac) 
+ SSEP(uV)]/SSE(of). Assuming-the residuals are independent and 
normally distributed, the ratio F is approximately distributed as 
Fl, n-2- 

market is mispricing S&P 500 futures options and that abnormal risk-adjusted 
rates of return may be earned by trading on the basis of the models' prices. 

E. Market Efficiency Test 

The systematic biases reported in Table III and the a-anomaly reported in 
Table IV may result because the futures option pricing models are misspecified 
or because the S&P 500 futures option market is inefficient or both. One way of 
attempting to isolate the two effects is to test whether abnormal rates of return 
after transaction costs may be earned by trading futures options on the basis of 
the models' prices. If abnormal returns after transaction costs can be earned, it 
is likely to be the case that the market is inefficient. The price deviations, 
systematic or not, signal profit opportunities. If abnormal profits cannot be 
earned, there are no grounds for rejecting the null hypothesis that the model is 
correctly specified and that the S&P 500 futures option market is efficient. 

The market efficiency test design involved hedging mispriced futures options 
against the underlying futures contract. Each day options were priced using the 
American futures option pricing models and the standard deviations estimated 
from all of the previous day's transaction prices.14 Because no estimate of a was 
available for the transactions of the first day of the sample period, January 28, 
1983, the first day's transactions were eliminated, and only 231 days and 28,493 
options remained in the sample. 

14 Because both call and put option transaction prices are used in the daily regression to estimate 
the a, the estimate is, in essence, an average of the estimates implied by call and puts separately. 
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Each of the 28,493 option transactions was examined to see whether the option 
was undervalued or overvalued relative to the futures option pricing models. The 
hedge formed at that instant in time"5 depended on the nature of the transaction 
price: 

Nature of Futures 
Transaction Option Futures 

Price Position Position 

Undervalued call Long 1 contract Short bC/6F contracts 
Overvalued call Short 1 contract Long bC/6F contracts 
Undervalued put Long 1 contract Long -bP/lF contracts 
Overvalued put Short 1 contract Short -bP/lF contracts 

where the partial derivatives of the call and put option prices were computed 
using valuation Equations (4) and (5). 

Two types of hedge portfolios were considered in the analysis. The first was a 
"buy-and-hold" hedge portfolio. Each hedge was formed according to the weights 
described above and was held until the futures option/futures expiration or until 
the end of the sample period, whichever came first. At such time, the futures 
option/futures positions were closed, and the hedge profit was computed. The 
second was the "rebalanced" hedge portfolio. Here, the initial hedge composition 
was the same as the buy-and-hold strategy, but at the end of each day, the futures 
position was altered to account for the change in the futures option's hedge ratio. 
The difference between the profits of these two hedge portfolio strategies was, 
therefore, the net gain or loss on the intermediate futures position adjustments 
within the rebalanced portfolio."6 

Note that the hedge portfolios are assumed to be held until the option's 

1 The hedge portfolio strategy assumed that the hedge is formed at the prices which signalled the 
profi't opportunity. This was done for two reasons. First, floor traders have the opportunity to transact 
at these prices. If a sell order at a price below the model price enters the pit, the floor trader can buy 
the options and then hedge his position within seconds using the futures. Second, the transaction 
price for retail customers may be handled by simply adding the bid-ask spread to the price which 
triggered a buy and subtracting the bid-ask spread from the price which triggered a sell. 

" To illustrate the mechanics of the buy-and-hold and rebalanced hedge portfolio strategies, 
consider the following example. A call option with an exercise price of $100 and with two days to 
expiration is priced at $1, where its theoretical price is $1.50 and its hedge ratio is 0.8. The current 
futures price is $100. Because the call is underpriced relative to the model, it is purchased, and 0.8 
futures contracts are sold. The net investment of both the buy-and-hold and rebalanced hedge 
portfolios is, therefore, $1 (i.e., one option contract times $1 per contract). 

By the end of the day before expiration, the futures price rises to say, $102. At the new futures 
price, the model price is $3.00 and the hedge ratio is 0.9. Since the hedge ratio has changed, 0.1 more 
futures contracts must be sold in order to maintain the riskless hedge of the rebalanced portfolio. 
The additional futures contracts are assumed to be bought or sold at the day's closing price, in this 
case $102. 

Now, suppose that on the following day, the futures expires at $106, and the futures option at 
$6.00 (i.e., the futures price $106 less the exercise price $100). The buy-and-hold hedge portfolio 
profit would be computed as the option position profit, $6 - 1 = $5, plus the futures position profit, 
-0.8 x ($106 - 100) = -$4.80, or $0.20 in total. The rebalanced hedge portfolio profit is computed 
as the $0.20 buy-and-hold profit plus the net gain (loss) on the intermediate futures position change, 
-0.1 x ($106 - 102) = -$0.40, or -$0.20 in total. 
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expiration. This is unlike the empirical procedures used in the stock option 
market efficiency tests which assume that an option position is opened at one 
price and then closed at the next available price. If the option pricing models 
have systematic mispricing tendencies, an option which is undervalued on one 
day is likely to be undervalued on the next. By holding the option position open 
until expiration, at which time the observed and model prices converge to the 
same value, there is some assurance that the prospective option mispricing profits 
are being captured. 

In Table V, the average cost, profit, and rate of return of the hedge portfolios 
formed on the basis of the American futures option prices are presented. When 
no minimum size restriction was placed on the absolute price deviation, 28,493 
hedge portfolios were formed. On an average, the number of futures contracts in 
each hedge at formation was 0.442 (1.442 less one futures option contract). The 
average investment cost of each hedge was -$46.75 (-0.0935 x $500),7 indicating 
that, on an average, money was collected when the hedge portfolios were formed. 

The average profit for the buy-and-hold hedge portfolio was $88 (0.1760 x 
$500), and the average rebalanced hedge portfolio profit was $77.85. The daily 
rebalancing of the futures position lowered overall hedge profits. On the other 
hand, the standard deviation of the buy-and-hold profit was 1.9302 compared 
with 0.8574 for the rebalanced portfolio profits."8 The daily rebalancing of the 
futures position decreased the volatility of the hedge profits portfolio by more 
than 55 percent. 

Immediately to the right of the rebalanced portfolio profit column is a column 
with break-even transaction cost rates. These numbers represent the average of 
the transaction cost rate per contract sufficient to eliminate rebalanced portfolio 
profit. In other words, if the transaction cost rate was less than $57.60 (0.1152 x 
$500) per contract, the average portfolio profit was greater than zero. Note that 
the transaction costs were assumed to be paid only on the contracts bought or 
sold when the portfolio was formed. The overall net effect of the incremental 
transaction costs on the intermediate daily rebalancing of the futures position of 
the hedge portfolios was assumed to be equal to zero.19 

The rebalanced portfolio excess rate of return column contains the average 
rate of return and the net of any interest carrying charge. If the option in the 
hedge portfolio was purchased, the excess rate of return of the hedge was equal 
to the rate of return on the hedge less the riskless rate of interest. If the option 
was sold, interest was assumed to be earned on the proceeds from the sale, so the 
excess rate of return on the hedge was equal to the rate of return on the hedge 
plus the riskless rate of interest. The excess rate of return for the rebalanced 

17 The value for the S&P 500 futures and futures options are index values. The dollar worth of the 
contract is obtained by multiplying the index value by $500. 

18 The standard deviations are not reported, but they can be inferred from the reported numbers 
of observations and the t-ratios. 

'9 To account for the transaction costs of the daily readjustment of the futures position within 
each portfolio separately would dramatically overstate the role of transaction costs within the hedge 
portfolio because, at the end of the day, some hedges will require that futures contracts be purchased 
and some that futures be sold. The net overall daily adjustment in the futures position would likely 
be near zero, so no intermediate transaction costs were imposed. 



144 The Journal of Finance 

Table 
V 

Average 

Cost, 

Profit, 

and 

Rate 
of 

Return 
of 

Hedge 

Portfolios 
by 

Size 
of 

Absolute 

Price 

Deviation 

from 

the 

American 

Futures 

Option 

Pricing 

Models 

for 

S&P 

500 

Futures 

Option 

Transaction 

Prices 

during 

the 

Period 

January 
31, 

1983 

through 

December 
30, 

1983 

Rebalanced Portfolio 

Minimum 

Break-Even 

Rebalanced 

Excess 

Absolute 

Average 

Buy-and-Hold 

Rebalanced 

Transaction 

Portfolio 

Return 

after 

Relative 

Price 

No. 
of 

Average 

No. 
of 

Portfolio 

Portfolio 

Cost 

Excess 

Rate 

Transaction 

Systematic 

Deviation 

Observations 

Investmenta 

Contractsb 

Profitc 

Profitd 

Ratee 

of 

Returnf 

Costsg 

Riskh 

All I 
AI 

28,493 

-0.0935 

1.442 

0.1760 

0.1557 

0.1152 

0.0905 

0.0696 

0.1193 

(15.39)i 

(30.64) 

(35.77) 

(27.78) 

(2.11) 

I 
I 

20.05 

22,850 

-0.1035 

1.441 

0.2054 

0.1854 

0.1372 

0.1026 

0.0850 

0.0745 

(15.83) 

(31.41) 

(38.48) 

(32.21) 

(1.27) 

A 

20.10 

17,596 

-0.1160 

1.437 

0.2444 

0.2181 

0.1615 

0.1164 

0.1006 

0.0375 

(16.24) 

(30.70) 

(39.91) 

(34.81) 

(0.59) 

A I 

20.15 

13,116 

-0.1370 

1.430 

0.2507 

0.2424 

0.1802 

0.1247 

0.1099 

0.0924 

(14.07) 

(27.53) 

(37.69) 

(33.48) 

(1.30) 

l'A 

20.20 

9,521 

-0.1200 

1.425 

0.2607 

0.2696 

0.2006 

0.1309 

0.1168 

0.1632 

(12.18) 

(23.82) 

(33.64) 

(30.20) 

(1.98) 

a 

The 

cost 
of 

the 

hedge 

portfolio 
is 

equal 
to 

the 

option 

price 
if 

the 

option 
is 

purchased 

and 

minus 

the 

option 

price 
if 

the 

option 
is 

sold. 

The 

futures 

position 

involves 
no 

net 

investment. 

b 

The 

average 

absolute 

number 
of 

option 

and 

futures 

contracts 
in 

the 

hedge. 

'The 

buy-and-hold 

portfolio 

profit 

assumes 

the 

hedge 
is 

formed 

and 

held 

until 

the 

expiration 
of 
the 

contracts 
or 

the 

end 
of 
the 

sample 

period. 

d 

The 

rebalanced 

portfolio 

profit 
is 

equal 
to 

the 

buy-and-hold 

profit 

plus 

(less) 

the 

net 

gains 

(losses) 

from 

the 

futures 

position 

adjustments 

made 

during 

the 

option's 

life. 

'The 

break-even 

transaction 

cost 

per 

contract 

sufficient 
to 

eliminate 

the 

rebalanced 

portfolio 

profit. 

'The 

rate 
of 

return 
of 

the 

rebalanced 

hedge 

portfolio 

less 

the 

riskless 

rate 
of 

interest. 

g 

The 

excess 

rate 
of 

return 
of 

the 

rebalanced 

hedge 

portfolio 

after 
a 

$10 

per 

contract 

transaction 

cost. 

h 

The 

relative 

systematic 

risk 
is 

estimated 
by 

regressing 

the 

excess 

rate 
of 

return 
of 

the 

hedge 
on 

the 

relative 

futures 

price 

changes 

over 

the 

same 

period. 

'The 

values 
in 

parentheses 

are 

t-ratios 
for 

the 

null 

hypothesis 

that 

the 

parameter 
is 

equal 
to 
0. 



American Futures Options 145 

portfolio using all of the transactions was 9.05 percent and is significantly greater 
than zero. 

Before proceeding with a description of the remaining two columns, it is 
worthwhile to point out three facts about the excess rates of return for the 
rebalanced hedge portfolio. First, the excess return did not fall very much if the 
proceeds from the futures option sales were assumed to earn no interest. In this 
case, the average excess rate of return was 8.41 percent, with a t-ratio of 33.49. 
Second, the excess rate of return for the American model was only slightly higher 
than it was for the European model. For the latter model, the average return was 
8.91 percent, with a t-ratio of 35.03. This evidence is consistent with the 
simulation results in the last section. Finally, the use of Student t-ratios to 
evaluate the significance of the excess rates of return is appropriate since the 
return distributions were symmetric and only slightly leptokurtic. 

The column labelled excess rate of return after transaction costs incorporated 
a $10 per contract transaction cost assumption. Such a fee is probably appropriate 
for a floor trader.20 The average excess rate of return after transaction costs was 
6.96 percent, again significantly greater than zero. 

The final column contains estimated slope coefficients from the regression of 
rebalanced portfolio excess rates of return on the futures price change relatives 
over the corresponding period. In essence, this regression is intended to evaluate 
the effectiveness of the portfolio rebalancing at maintaining a riskless hedge. For 
the entire sample of hedge portfolio, the relative systematic risk is significantly 
positive at the 5 percent level, however its magnitude, 0.1193, is very small. 

Table V also contains the hedge portfolio profit characteristics when minimum 
absolute option price deviations of 0.05, 0.10, 0.15, and 0.20 were imposed. 
Naturally, the higher was the demanded absolute price deviation, the fewer were 
the option transactions to qualify as hedge portfolio candidates. In the case where 
the minimum absolute deviation was set equal to 0.10, for example, only 17,596 
hedges were formed. 

With all of the price deviation strategies reported in Table V, the average 
excess rates of return are significantly greater than zero. For floor traders, 

20 Actually, the assumed $10 per contract overstates the transaction costs a floor trader might face. 
The only transaction cost paid by floor traders is a clearing fee, which is on order of $1.50 per 
contract. The $10 per contract assumption, therefore, presents a conservative view of the floor trader's 
hedge portfolio profits after transaction costs. 

Two other institutional considerations are worthy of note. The transaction cost rates in this 
market are quoted on a "round-turn" basis. That is, a $50 per contract commission charge covers the 
cost of entering the market at the time of purchase or sale and the cost of closing the position at a 
subsequent date. For futures contract positions, the broker charges all of the commission when the 
position is closed, and, for futures option positions, half the commission is charged when the position 
is opened and half when it is closed. 

Since commission rates are negotiated between each customer and his or her broker, it is difficult 
to assess what are representative commission charges for the various futures/futures option customers. 
Large institutional customers such as mutual funds typically pay commissions at a rate of $20 to $30 
per contract and are allowed to post margin requirement in the form of interest-bearing T-bills. 
Smaller customers likely pay commissions of $50 or more, and are also allowed to the T-bill margin- 
posting privilege. Some brokers quote lower rates for small customers, but demand margin money in 
the form of cash. 
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demanding a minimum price deviation of 0.05 is reasonable since they face only 
the cost of clearing their transactions, which is considerably less than $25 per 
contract. When such a minimum price deviation was imposed, the average hedge 
portfolio excess rate of return was 10.26 percent before clearing costs and 8.50 
percent after a $10 per contract clearing cost was applied to both the futures 
option and futures transactions. Retail customers, however, not only face the 
commission rates imposed by their broker, but also the bid-ask spread imposed 
by the market maker. Assuming a commission rate of $50 per contract and a bid- 
ask spread of $50 per option contract, demanding a minimum price deviation of 
0.20 is reasonable. However, in this case, the average break-even transaction cost 
rate was 0.2006, so the retail customer would have earned about $0.30 per hedge 
after transaction costs. 

In the previous section, systematic mispricing errors related to the moneyness 
of the option were documented. For this reason, the option transactions were 
categorized by the type of option and by the degree to which the option is in-the- 
money. The results are reported in Table VI. Most of the abnormal profits 
associated with the trading strategy appear to be concentrated in out-of-the- 
money put options. The average excess rate of return after the floor trader's 
clearing costs was 16.88 percent. In comparison, none of the other option 
categories had an average return greater than 3 percent after clearing costs. 

One plausible explanation for this result is that more than 72 percent out-of- 
the-money put options were overpriced (see Table III) and thus sold within the 
trading strategy. Over the period January 31, 1983 through December 30, 1983, 
the S&P 500 Index rose from 145.30 to 164.93, indicating that writing out-of- 
the-money puts would have been profitable indeed. But, the put options sold 
within the hedge strategy were balanced against short positions in the futures, 
so what was gained on the put transactions should have been lost on the futures 
transactions. Moreover, the estimated systematic risk for the hedge portfolios in 
this category was significantly negative, indicating that, if anything, not enough 
put options were sold to immunize the portfolio against movements in the 
underlying futures price. The overall upward market movement in the equity 
market during the examination period must, therefore, be discounted as a 
potential explanation of the market inefficiency. 

Although the results of Table VI indicate that floor traders could profit by 
writing out-of-the-money puts, it is doubtful whether retail customers could 
profit by such a strategy. As was noted in Table II, at-the-money options enjoyed 
the greatest volume of activity and, therefore, probably experienced the lowest 
bid-ask spread. Out-of-the-money S&P 500 futures options have less liquidity, 
and it is not uncommon to find the bid-ask spread as high as 0.15 or 0.20. 
Assuming a commission rate of $50 per contract and a bid-ask spread of $50 per 
contract takes the average profit from $159.70 per hedge to an average gain after 
transaction costs of $45.40. 

Overall, the results reported in Tables V and VI provide evidence that the joint 
hypothesis that the American futures option valuation models are correctly 
specified and that the S&P 500 futures option market is efficient is refuted for 
the period January 31, 1983 through December 30, 1983, at least from the 
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Table 
VI 

Average 

Cost, 

Profit, 

and 

Rate 
of 

Return 
of 

Hedge 

Portfolios 
by 

the 

Moneyness 
of 

the 

Option 
for 

S&P 

500 

Futures 

Option 

Transaction 

Prices 

during 

the 

Period 

January 
31, 

1983 

through 

December 
30, 

1983 
Rebalanced Portfolio 

Break-Even 

Rebalanced 

Excess 

Futures 

Average 

Buy-and-Hold 

Rebalanced 

Transaction 

Portfolio 

Return 

after 

Relative 

Option 

No. 
of 

Average 

No. 
of 

Portfolio 

Portfolio 

Cost 

Excess 

Rate 

Transaction 

Systematic 

Category 

Observations 

Investmenta 

Contractsb 

Profitc 

Profitd 

Ratee 

of 

Returnf 

Costsg 

Riskh 

Calls 

7,736 

-1.0521 

1.339 

-0.0077 

0.0204 

0.0160 

0.0432 

0.0159 

0.7339 

FIX 
< 
1 

(-0.34)' 

(2.34) 

(7.00) 

(2.60) 

(5.25) 

Calls 

7,150 

0.5963 

1.670 

0.1052 

0.1284 

0.0763 

0.0295 

0.0206 

0.4858 

FIX 
2 
1 

(4.60) 

(16.81) 

(12.58) 

(8.84) 

(9.02) 

Puts 

3,620 

-1.9300 

1.646 

0.0975 

0.0497 

0.0273 

0.0186 

0.0074 

0.4150 

FIX 
< 
1 

(2.98) 

(1.95) 

(3.99) 

(1.61) 

(3.66) 

Puts 

9,987 

0.8208 

1.286 

0.3979 

0.3194 

0.2518 

0.1968 

0.1688 

-0.7379 

F/X 
2 
1 

(21.53) 

(37.46) 

(42.10) 

(36.42) 

(-7.56) 

a 

The 

cost 
of 

the 

hedge 

portfolio 
is 

equal 
to 

the 

option 

price 
if 

the 

option 
is 

purchased 

and 

minus 

the 

option 

price 
if 

the 

option 
is 

sold. 

The 

futures 

position 

involves 
no 

net 

investment. 

b 

The 

average 

absolute 

number 
of 

option 

and 

futures 

contracts 
in 

the 

hedge. 

'The 

buy-and-hold 

portfolio 

profit 

assumes 

the 

hedge 
is 

formed 

and 

held 

until 

the 

expiration 
of 

the 

contracts 
or 

the 

end 
of 
the 

sample 

period. 

d 

The 

rebalanced 

portfolio 

profit 
is 

equal 
to 

the 

buy-and-hold 

profit 

plus 

(less) 

the 

net 

gains 

(losses) 

from 

the 

futures 

position 

adjustments 

made 

during 

the 

option's 

life. 

'The 

break-even 

transaction 

cost 

per 

contract 

sufficient 
to 

eliminate 

the 

rebalanced 

portfolio 

profit. 

f 

The 

rate 
of 

return 
of 

the 

rebalanced 

hedge 

portfolio 

less 

the 

riskless 

rate 
of 

interest. 

9 

The 

excess 

rate 
of 

return 
of 

the 

rebalanced 

hedge 

portfolio 

after 
a 

$10 

per 

contract 

transaction 

cost. 

h 

The 

relative 

systematic 

risk 
is 

estimated 
by 

regressing 

the 

excess 

rate 
of 

return 
of 
the 

hedge 
on 

the 

relative 

futures 

price 

changes 

over 

the 

same 

period. 

'The 

value 
in 

parentheses 

are 

t-ratios 
for 

the 

null 

hypothesis 

that 

the 

parameter 
is 

equal 
to 
0. 
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Table 

VII 

Average 

Cost, 

Profit, 

and 

Rate 
of 

Return 
of 

Hedge 

Portfolios 
by 

Subperiod 
for 

S&P 

500 

Futures 

Option 

Transaction 

Prices 

during 

the 

Period 

January 
31, 

1983 

through 

December 
30, 

1983 

Rebalanced 
Portfolio 

Break-Even 

Rebalanced 

Excess 

Average 

Buy-and-Hold 

Rebalanced 

Transaction 

Portfolio 

Return 

after 

Relative 

No. 
of 

Average 

No. 
of 

Portfolio 

Portfolio 

Cost 

Excess 

Rate 

Transaction 

Systematic 

Subperiod 

Observations 

Investmenta 

Contractsb 

Profitc 

Profitd 

Ratee 

of 

Returnf 

Costsg 

Riskh 

1/31/83-4/21/83 

9,846 

-0.0509 

1.454 

-0.1758 

0.0308 

0.0271 

0.0047 

-0.1024 

0.8848 

(-8.73)' 

(7.01) 

(1.56) 

(-4.13) 

(15.40) 

4/22/83-7/14/83 

8,237 

-0.1623 

1.450 

0.5118 

0.3884 

0.2682 

0.2067 

0.1876 

0.8641 

(22.84) 

(55.08) 

(50.06) 

(39.82) 

(5.66) 

7/15/83-10/6/83 

6,001 

-0.1902 

1.423 

0.2323 

0.0953 

0.0780 

0.0737 

0.0515 

-0.2587 

(8.86) 

(7.25) 

(10.97) 

(7.72) 

(-0.90) 

10/7/83-12/30/83 

4,409 

0.0710 

1.430 

0.2588 

0.0968 

0.0740 

0.0879 

0.0567 

-1.769 

(14.55) 

(4.49) 

(12.48) 

(8.14) 

(-4.52) 

a 

The 

cost 
of 

the 

hedge 

portfolio 
is 

equal 
to 

the 

option 

price 
if 

the 

option 
is 

purchased 

and 

minus 

the 

option 

price 
if 

the 

option 
is 

sold. 

The 

futures 

position 

involves 
no 

net 

investment. 

b 

The 

average 

absolute 

number 
of 

option 

and 

futures 

contracts 
in 

the 

hedge. 

c 

The 

buy-and-hold 

portfolio 

profit 

assumes 

the 

hedge 
is 

formed 

and 

held 

until 

the 

expiration 
of 

the 

contracts 
or 

the 

end 
of 

the 

sample 

period. 

d 

The 

rebalanced 

portfolio 

profit 
is 

equal 
to 

the 

buy-and-hold 

profit 

plus 

(less) 

the 

net 

gains 

(losses) 

from 

the 

futures 

position 

adjustments 

made 

during 

the 

option's 

life. 

' 

The 

break-even 

transaction 

cost 

per 

contract 

sufficient 
to 

eliminate 

the 

rebalanced 

portfolio 

profit. 

f 

The 

rate 
of 

return 
of 

the 

rebalanced 

hedge 

portfolio 

less 

the 

riskless 

rate 
of 

interest. 

g 

The 

excess 

rate 
of 

return 
of 

the 

rebalanced 

hedge 

portfolio 

after 
a 

$10 

per 

contract 

transaction 

cost. 

h 

The 

relative 

systematic 

risk 
is 

estimated 
by 

regressing 

the 

excess 

rate 
of 

return 
of 

the 

hedge 
on 

the 

relative 

futures 

price 

changes 

over 

the 

same 

period. 

'The 

values 
in 

parentheses 

are 

t-ratios 

for 

the 

null 

hypothesis 

that 

the 

parameter 
is 

equal 
to 
0. 
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standpoint of floor traders who stood ready to transact based on model prices. 
From a retail customer's standpoint, however, it is doubtful whether abnormal 
profits after transaction costs could have been earned. 

In Table VII, the option transactions in four separate subperiods are consid- 
ered. In the first subperiod, the average excess rate of return on the hedge 
portfolio was 0.47 percent, insignificantly different from zero. In the remaining 
three subperiods, the excess rate of return was significantly greater than zero, 
with the return highest in the second subperiod and second highest in the final 
subperiod. In other words, there does not appear to be any indication that the 
market became more efficient during 1983. Whether floor traders can continue 
to earn abnormal rates of return after clearing costs by buying undervalued 
and selling overvalued S&P 500 futures options must await further empirical 
investigation. 

III. Summary and Conclusions 

The purpose of this paper is to review the theory underlying American futures 
option valuation and to test the theory in one of the recently developed futures 
option markets. The theoretical work begins by focusing on the partial differential 
equation of Black [5] and by discussing how the boundary conditions to the 
equation imply different structural forms to the pricing equations. Although no 
analytic solutions to the American futures option pricing problems are provided, 
efficient analytic approximations are presented. Simulations of futures option 
prices using the European and American models and plausible option pricing 
parameters show that the early exercise premium of the American futures option 
has a significant impact on pricing if the option is in-the-money. 

The empirical work focuses on transaction prices for S&P 500 equity futures 
options during the first 232 trading days of the market's existence, the period 
from January 28, 1983 through December 30, 1983. The major empirical results 
are as follows: 

1. A moneyness bias and a maturity bias appear for the American futures 
option pricing models. For calls, the moneyness bias is the opposite of that 
reported for stock options-out-of-the-money options are underpriced rel- 
ative to the model and in-the-money options are overpriced. For puts, just 
the reverse is true-out-of-the-money puts are overpriced relative to the 
model and in-the-money puts are underpriced. The maturity bias is the 
same for both the calls and the puts-short time-to-expiration options are 
underpriced relative to the model and long time-to-expiration are overpriced, 
but the bias appears more serious for put options than for call options. 

2. The standard deviation implied by call option transaction prices is lower, 
on average, than that implied by put option prices. 

3. A riskless hedging strategy using the American futures option pricing models 
(as well as the European futures option pricing models) generates abnormal 
risk-adjusted rates of return after the transaction costs paid by floor traders 
or large institutional customers. If a retail customer was to try to capture 
the profits implied by the futures option mispricing, however, transaction 
costs will likely eliminate the hedge portfolio profit opportunities. 
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